☞ ░ 老猿Python博文目录:https://blog.csdn.net/LaoYuanPython ░
仿射变换博文传送门(带星号的为付费专栏文章):
- *图像仿射变换原理1:齐次坐标来龙去脉详解
- *图像仿射变换原理2:矩阵变换、线性变换和图像线性变换矩阵
- *图像仿射变换原理3:仿射变换类型及变换矩阵详解
- *图像仿射变换原理4:组合变换及对应变换矩阵
- *图像仿射变换原理5:组合变换矩阵的OpenCV-Python实现
- OpenCV-Python图像处理:仿射变换详解及案例
- OpenCV-Python仿射变换开发中遇到的坑
- openCV仿射变换:getAffineTransform的案例
- 为什么称图像旋转、错切、缩放变换是线性变换?
- 图像仿射变换:绕点旋转和指定直线依赖轴shear错切变换矩阵
- 图像仿射变换shear怎么翻译?剪切、错切、推移哪个译词好?
- 仿射变换原理和其OpenCV-Python实现知识汇总
可以看到百度翻译将其翻译为剪切,所以大多数关于仿射变换的文章中都称为剪切变换。
二、shear对应变换功能
shear是保持图形上各点的某一坐标值不变,而另一坐标值关于该保持不变坐标值进行线性变换。坐标不变的轴称为依赖轴,其余坐标轴称为方向轴。
老猿理解为类似于在图像外接平行四边形固定一边的情况下,在该固定边的对边某个角施加了一个推力,该推力的作用线与x或y轴方向平行,在该推力的作用下图像的外接平行四边形发送的形变就是shear,可以想象一下,一个正方形在推力作用下变成一个平行四边形的场景,下图是正方形ABCD经过shear变成平行四边形A’B’CD:
因此从该变换的功能说,shear翻译成剪切不是很合适,翻译为推移更直白、而翻译成错切则既兼顾了英文单词含义、又表达形象贴切。
更多图像处理的介绍请参考专栏《OpenCV-Python图形图像处理 https://blog.csdn.net/laoyuanpython/category_9979286.html》和《https://blog.csdn.net/laoyuanpython/category_10581071.html OpenCV-Python初学者疑难问题集》相关文章。
更多图像处理的数学基础知识请参考专栏《人工智能数学基础 https://blog.csdn.net/laoyuanpython/category_10382948.html》
写博不易,敬请支持:
如果阅读本文于您有所获,敬请点赞、评论、收藏,谢谢大家的支持!
关于老猿的付费专栏
- 付费专栏《https://blog.csdn.net/laoyuanpython/category_9607725.html 使用PyQt开发图形界面Python应用》专门介绍基于Python的PyQt图形界面开发基础教程,对应文章目录为《 https://blog.csdn.net/LaoYuanPython/article/details/107580932 使用PyQt开发图形界面Python应用专栏目录》;
- 付费专栏《https://blog.csdn.net/laoyuanpython/category_10232926.html moviepy音视频开发专栏 )详细介绍moviepy音视频剪辑合成处理的类相关方法及使用相关方法进行相关剪辑合成场景的处理,对应文章目录为《https://blog.csdn.net/LaoYuanPython/article/details/107574583 moviepy音视频开发专栏文章目录》;
- 付费专栏《https://blog.csdn.net/laoyuanpython/category_10581071.html OpenCV-Python初学者疑难问题集》为《https://blog.csdn.net/laoyuanpython/category_9979286.html OpenCV-Python图形图像处理 》的伴生专栏,是笔者对OpenCV-Python图形图像处理学习中遇到的一些问题个人感悟的整合,相关资料基本上都是老猿反复研究的成果,有助于OpenCV-Python初学者比较深入地理解OpenCV,对应文章目录为《https://blog.csdn.net/LaoYuanPython/article/details/109713407 OpenCV-Python初学者疑难问题集专栏目录 》
- 付费专栏《https://blog.csdn.net/laoyuanpython/category_10762553.html Python爬虫入门 》站在一个互联网前端开发小白的角度介绍爬虫开发应知应会内容,包括爬虫入门的基础知识,以及爬取CSDN文章信息、博主信息、给文章点赞、评论等实战内容。
前两个专栏都适合有一定Python基础但无相关知识的小白读者学习,第三个专栏请大家结合《https://blog.csdn.net/laoyuanpython/category_9979286.html OpenCV-Python图形图像处理 》的学习使用。
对于缺乏Python基础的同仁,可以通过老猿的免费专栏《https://blog.csdn.net/laoyuanpython/category_9831699.html 专栏:Python基础教程目录)从零开始学习Python。
如果有兴趣也愿意支持老猿的读者,欢迎购买付费专栏。