一、怎样才算是好的时间序列预测模型呢?
- 单变量和多变量时间序列都适用。
- 既能运用序列自身的历史信息还能运用其他变量的信息。
- 除了动态信息(随时间变化而变化的变量),还可以利用静态信息(不会随时间变化的变量)。
- 复杂模式和简单模式的时间序列都能适应。
- 能够多步预测。(好处在于:单步预测再迭代有累积误差)。
- 预测结果不仅仅是得出预测点,还能给出预测值的不确定区间。
- 具有良好的可解释性。
二、时间序列预测时,对所有变量的分类
2.1 静态变量
2.1.1 静态离散变量
这些变量不随时间变化。比如:商品所在城市、销售区域,类别等。(已知)
2.1.2 静态连续变量
已经发生过,在过去随时间变化的连续变量,但不随现在时间变化。比如:商品A在2020年总销售额,商品B在去年双十一期间的销量等。(已知)
2.2 动态变量
2.2.1 动态时变变量
变量随时间变化(无法推断)。比如:要预测的商品销售额等。(未知)
2.2.2 动态时不变变量
变量随时间变化(可以推断)。比如:年、月、日等。(已知)
三、单步预测和多步预测
3.1 单步预测
每—次预测的时候输入窗口只预测未来一个值。单步预测预测的时候输入是最近的数据,而长期依赖和短期依赖已经在模型中训练了,准确率比多步预测要好。适用于短期预测。
3.1.1 单步预测的两个策略
- 输入窗口全部使用真实值作为输入窗口,这种情况是只预测未来一个值的时候这个情况的。
- 预测未来第一个值的时候输入窗口使用全部真实值,预测后面 n-1 个的时候,预测窗口将包含有预测值,这种情况是单步预测预测未来的多个值的时候。
3.2 多步预测
每—次预测的时候输入窗口预测未来n个值(也叫n步)。多步预测的预测误差会随着步数的增加而累积,多步预测的结果也会越来越不准。适用于长期预测。
3.2.1 多步预测的两个策略
- 只预测未来一次,即只预测一个n输入的n个输出,n是滑动窗口个数,即输入n个滑动窗口,直接输出未来的n个,利用的输入全部是历史数据的真实值。
- 预测未来多次,即预测一个m×n输入的m×n个输出,n是滑动窗口个数,m=1、2、3、4、5、6…,即输入n个滑动窗口作为一次输入,整体输入是m次这样的窗口,直接输出未来的m×n个,利用的输入第一次是历史数据的真实值,第一次之后包含有预测值。