时间序列预测相关问题

一、怎样才算是好的时间序列预测模型呢?

  • 单变量和多变量时间序列都适用。
  • 既能运用序列自身的历史信息还能运用其他变量的信息。
  • 除了动态信息(随时间变化而变化的变量),还可以利用静态信息(不会随时间变化的变量)。
  • 复杂模式和简单模式的时间序列都能适应。
  • 能够多步预测。(好处在于:单步预测再迭代有累积误差)。
  • 预测结果不仅仅是得出预测点,还能给出预测值的不确定区间。
  • 具有良好的可解释性。

二、时间序列预测时,对所有变量的分类

2.1 静态变量

2.1.1 静态离散变量

这些变量不随时间变化。比如:商品所在城市、销售区域,类别等。(已知)

2.1.2 静态连续变量

已经发生过,在过去随时间变化的连续变量,但不随现在时间变化。比如:商品A在2020年总销售额,商品B在去年双十一期间的销量等。(已知)

2.2 动态变量

2.2.1 动态时变变量

变量随时间变化(无法推断)。比如:要预测的商品销售额等。(未知)

2.2.2 动态时不变变量

变量随时间变化(可以推断)。比如:年、月、日等。(已知)

三、单步预测和多步预测

3.1 单步预测

每—次预测的时候输入窗口只预测未来一个值。单步预测预测的时候输入是最近的数据,而长期依赖和短期依赖已经在模型中训练了,准确率比多步预测要好。适用于短期预测。

3.1.1 单步预测的两个策略

  • 输入窗口全部使用真实值作为输入窗口,这种情况是只预测未来一个值的时候这个情况的。
  • 预测未来第一个值的时候输入窗口使用全部真实值,预测后面 n-1 个的时候,预测窗口将包含有预测值,这种情况是单步预测预测未来的多个值的时候。

3.2 多步预测

每—次预测的时候输入窗口预测未来n个值(也叫n步)。多步预测的预测误差会随着步数的增加而累积,多步预测的结果也会越来越不准。适用于长期预测。

3.2.1 多步预测的两个策略

  • 只预测未来一次,即只预测一个n输入的n个输出,n是滑动窗口个数,即输入n个滑动窗口,直接输出未来的n个,利用的输入全部是历史数据的真实值。
  • 预测未来多次,即预测一个m×n输入的m×n个输出,n是滑动窗口个数,m=1、2、3、4、5、6…,即输入n个滑动窗口作为一次输入,整体输入是m次这样的窗口,直接输出未来的m×n个,利用的输入第一次是历史数据的真实值,第一次之后包含有预测值

参考文章

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值