2025版最新大模型应用开发流程(非常详细)零基础入门到精通,收藏这一篇就够了

大语言模型应用开发流程包括筛选应用场景、企业知识管理、训练场景大模型、业务系统融合、大模型安全体系建设、持续改进体验等多个环节。通过将AI智能体集成到数字化系统中,将业务数字化系统升级为智能化系统,从而实现人类员工与数字员工的高效协作。

大语言模型应用开发流程包括筛选应用场景、企业知识管理、训练场景大模型、业务系统融合、大模型安全体系建设、持续改进体验等多个环节。通过将AI智能体集成到数字化系统中,将业务数字化系统升级为智能化系统,从而实现人类员工与数字员工的高效协作。

一、筛选大模型应用场景

企业首先需要明确自身的需求和目标,然后基于实际业务需求和痛点筛选应用场景,确保解决方案能够真正产生价值。并根据应用场景的紧迫性和预期收益,对场景进行优先级排序,先行实施高价值场景。

1、数字化现状评估

数字化现状评估用于了解企业当前的数字化水平和存在的问题,为项目规划提供基础。在这一步中,需要对企业的业务流程、技术架构、数据管理、信息系统等方面进行全面分析。通过调研和评估,团队可以识别企业在数字化转型过程中遇到的挑战和痛点,明确项目的目标和优先级,为接下来的解决方案设计提供依据。

2、确定应用场景

在明确企业需求和数字化现状后,企业需要确定具体的应用场景。选择那些能够产生最大价值、解决实际问题的场景,确保大模型的应用能真正提高业务效率和竞争力。例如,选择在客户服务中引入智能客服,或在生产线上应用预测维护,都是基于实际需求的有效场景。

3、实施方案设计

根据企业的数字化现状和业务需求,制定符合企业战略目标的数智化方案,涉及业务流程、技术方案、数据管理、用户体验等方面。设计过程中,团队需要考虑企业的资源和能力,确保方案的可行性和可持续性,提供一个全面、合理、创新的数字化智能化方案,满足企业的业务需求,提高运营效率和竞争力。

二、做好企业知识管理

企业知识的发现、沉淀、积累、管理和价值发挥是实现智能化转型的关键。通过全面的数据与知识管理,企业可以挖掘和发挥数据和知识的价值,支持智能决策,提升业务能力和竞争力。需要通过构建一个开放和共享的知识管理平台,鼓励员工主动分享和交流经验,形成良好的知识共享文化。

1、业务大数据治理

涉及从各种来源收集和获取数据,并进行预处理和清洗。数据可以来自传感器、设备、数据库、第三方API等,需要进行有效的数据收集、存储和管理。通过整合业务系统数据,企业可以形成一个统一的数据视图,为大模型的训练和应用提供高质量的数据基础,确保数据的一致性和准确性。有效的数据治理是企业决策和运营的基础,有助于提升数据的利用率和价值。

2、非结构化知识整合

包括处理来自邮箱、文档、会议录音、培训视频等各种形式的非结构化数据。通过先进的自然语言处理和数据挖掘技术,这些散落在不同来源的知识可以被提取、整理和结构化,转化为企业的有价值资产。整合非结构化知识能够帮助企业发现隐藏的信息和模式,提高决策的科学性和准确性,增强企业的竞争力和创新能力。

3、员工经验知识整合

需要将企业员工的隐性知识显性化。隐性知识通常包括员工在工作中积累的经验、技巧和解决问题的方法,通过知识管理系统和协作平台,这些隐性知识可以被记录、分享和传播。整合员工经验知识,有助于企业在员工培训、新员工入职、问题解决等方面实现高效传递和应用,增强组织的整体智慧和创新能力。

三、训练场景大模型

训练场景大模型是企业智能化转型的重要环节,能够满足特定业务需求,提升模型性能,实现数据的有效利用,应对变化和复杂性,推动创新和差异化。通过训练和应用场景大模型,企业可以在激烈的市场竞争中占据优势,实现高效运营和持续发展。

1、采用通用大模型快速验证思路

在大模型训练的初期,可以先使用通用大模型进行测试。这些预训练模型已经在大量数据上进行了训练,具有广泛的适用性和较高的准确性。通过测试,可以评估模型在实际业务场景中的表现,识别潜在的改进点,为后续的模型优化和定制化开发提供依据,降低开发风险和成本。这种快速验证思路能帮助企业迅速找到合适的技术方向,提高项目成功率。

2、打造企业私有垂直大模型

为了更好地满足企业的特定需求,可以在通用大模型的基础上,进一步进行定制化训练,打造企业私有垂直大模型。这些模型针对企业的特定业务场景和数据进行优化,具有更高的专业性和精确度。通过这种方式,企业能够获得更贴合实际需求的AI解决方案,提升业务效率和竞争力。例如,医疗机构可以训练针对病患数据的专用模型,电商企业可以优化推荐系统,金融企业可以定制化风险评估模型。

3、开发AI智能体接口

通过Agent开发平台,用户可以创建并发布智能体到AI应用市场,实现全面业务融合。智能体应用涵盖员工智能体、业务智能体等,支持知识搜索、文档协作、日程管理等功能。这些智能体能够在多个场景下与用户进行智能交互,提高工作效率和用户体验,助力企业实现智能化办公和业务流程优化。智能体接口的开发和应用不仅能提高内部协作效率,还能为客户提供个性化、实时的服务,增强客户满意度和忠诚度。

四、融合业务数字化系统

根据需求和训练好的模型,进行应用的开发和集成。这可能涉及到软件界面开发、硬件设备集成、大数据融合、第三方API对接等工作。

1、将智能体API集成到数字化系统

将智能体API深度整合到企业的各类业务系统中,如产研系统、营销系统、供应链系统和服务系统。通过业务融合平台,智能体可以无缝连接企业数字化流程,提升业务协作效率,将原有数字化系统升级为智能化系统。

2、数智化系统测试与优化

进行系统的测试和优化,确保AI应用能够正常工作和达到预期效果。这可以包括功能测试、性能测试、稳定性测试等。通过不断的测试和优化,确保智能化系统在各种业务场景下的可靠性和高效性。

3、数智化系统部署与监控

在系统研发完成后,需要进行系统上线和部署,确保平台的稳定运行和可靠性。智能体可以在企业内部私有化部署,确保数据安全和内容生成质量。

4、实现人类员工与数字员工的协作

通过智能体的引入,实现人类员工与数字员工的高效协作。智能体可以承担重复性高、逻辑性强的任务,而人类员工则专注于更具创造性和决策性的工作。通过这种协作模式,企业可以显著提升工作效率和业务响应速度,最大限度地发挥人类员工和智能体各自的优势,实现业务流程的全面智能化和优化,提高整体运营效率和竞争力。

五、搭建大模型安全体系

大模型安全体系建设旨在保护企业私有数据和AI安全,确保在使用大模型技术时,企业的数据和业务环境保持高度安全。通过构建全面的安全体系,企业能够防范各种安全威胁,保障大模型应用的安全运行。

1、办公安全

办公安全主要关注企业内部办公环境的安全性。通过采用多层次的安全策略,包括身份认证、权限管理、数据加密和终端安全防护,确保员工在办公过程中不会发生数据泄露或被未授权访问。企业应部署全面的防病毒和防恶意软件解决方案,并定期进行安全审计和漏洞扫描,以及时发现和修复潜在的安全隐患。

2、业务云安全

业务云安全旨在保护企业在云端运行的应用和数据。通过采用先进的云安全技术,如云端加密、数据备份和灾难恢复、多因素认证、虚拟私有云(VPC)和防火墙,确保企业业务系统的高可用性和数据安全性。云服务提供商应提供全面的安全监控和管理工具,帮助企业实时监控和管理云环境中的安全状况,防止数据泄露和网络攻击。

3、大模型内容安全

大模型内容安全关注在使用和部署大模型过程中保护生成内容的安全性和合规性。通过内容过滤、敏感信息识别、反垃圾信息处理和内容审核等技术,确保大模型生成的内容符合企业的安全和合规要求。企业应建立严格的内容审核流程和机制,防止生成有害或不适当的内容,确保大模型在不同应用场景中的安全使用。

六、持续迭代改进体验

通过收集用户反馈、监控数据及分析性能指标,企业能够精准识别应用中的优化空间。通过不断完善应用功能、提升系统性能,及时修复问题,企业可以确保用户体验的不断提升,使智能化系统更高效地支持业务目标,进一步提升员工和数字员工的协作效率。

1、界面设计优化

通过用户反馈和交互行为分析,识别出用户在使用中的痛点并改进界面布局、导航结构、操作指引等方面。例如,通过简化操作步骤、增加重要信息的视觉提示或调整配色等,让界面更加人性化。此外,还可以根据不同用户角色或场景需求,实现个性化的界面布局,使应用更加符合用户习惯,提高工作效率与用户满意度。

2、系统功能迭代

通过需求分析和用户反馈,识别出需要新增或改进的功能模块,如增加自动化处理流程、增强数据分析能力等。功能迭代过程还需重视用户体验,使新增功能在提升操作效率的同时保持简便性。定期迭代功能不仅帮助系统保持竞争力,还可快速响应业务需求,优化工作流程,从而为企业带来更高的业务效益。

3、性能优化提升

通过分析系统运行数据,识别可能存在的性能瓶颈,如页面加载时间、数据库查询速度等,并采取相应优化措施。例如,通过优化代码、提高算法效率或采用缓存技术等提升响应速度。此外,还需根据应用场景合理扩展硬件资源,保障系统在高并发情况下依然流畅运行,确保用户体验始终处于最佳状态。

4、系统问题修复

通过定期监控应用的错误日志、用户投诉以及系统崩溃情况,快速定位并修复问题。例如,修复功能故障、处理兼容性问题或排查安全漏洞等,及时确保系统正常运行。问题修复还需保持持续跟踪,避免同类问题再次发生,为用户提供稳定、可靠的使用体验,从而增加用户信任感并提升企业品牌形象。

AI大模型学习福利

作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取

2024最新版CSDN大礼包:《AGI大模型学习资源包》免费分享

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img
因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取

2024最新版CSDN大礼包:《AGI大模型学习资源包》免费分享

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取

2024最新版CSDN大礼包:《AGI大模型学习资源包》免费分享

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img
因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取

2024最新版CSDN大礼包:《AGI大模型学习资源包》免费分享

四、AI大模型商业化落地方案

img

因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取

2024最新版CSDN大礼包:《AGI大模型学习资源包》免费分享

作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值