纯视觉方案还无法完全替代激光雷达(LiDAR)

在当前的自动驾驶传感器技术下,尤其是在追求高安全性的场景中,纯视觉方案还无法完全替代激光雷达(LiDAR)。两者各有优缺点,融合使用是最佳选择。

1. 核心差异:怎么“看”世界?测距原理不同

摄像头(纯视觉)

就像人眼 + 手机拍照。看的是颜色、纹理、形状(二维图像)。
想知道物体离多远?需要靠“猜”:

  • 双目视觉: 像两只眼睛看东西,近的东西“错开”大,远的东西“错开”小,利用这个“错开”(视差)来估算距离。但距离远、物体表面光滑/反光/无纹理、光线差时,“错开”不明显或看不清,就“猜”不准了。
  • AI单目测距: 让AI看大量带距离信息的图片学习规律,遇到新图片就按“经验”猜距离。但经验不够(没见过的场景)或者规律变了(特殊光照、天气),就容易“猜错”。而且它猜的是“大概远近”(相对深度),要知道具体几米远还需要其他信息帮忙(比如车速、地图),这些信息本身也可能不准。
激光雷达 (LiDAR)

就像蝙蝠用声波测距,但用的是激光。主动发射激光脉冲,精确测量激光打到物体再反射回来的时间,直接算出精确距离(毫米到厘米级)。
结果是一堆精确的“”,形成物体的三维轮廓(点云)。但它看不到颜色和精细纹理。

通俗比喻
  • 摄像头: 一个近视+散光(光线差时)的画家,画一幅画(2D图像),然后根据画的内容(颜色、纹理)和画法(透视)来估计画中物体的远近,有时猜得准,有时猜不准。
  • 激光雷达: 一个高度精确的测量员,用激光尺飞快地测量周围每个点的距离,生成一个精确的3D点阵模型,但对物体是什么颜色、上面写了什么字不敏感。

2. 纯视觉面临的主要挑战(为什么难替代激光雷达?)

“猜”距离不准、不稳定
  • 距离远: “猜”的误差会急剧增大(就像远处的东西两只眼睛看起来几乎不“错开”了)。
  • 物体表面特殊: 光滑(车体)、反光(玻璃、水坑)、纯色无纹理(白墙)——找不到特征点匹配,很难“猜”准距离。
  • 复杂光线: 逆光、黄昏、隧道口进出、强光直射(太阳)——相机看不清东西,画面过曝或太暗,AI也“懵圈”。
  • 恶劣天气: 虽然可以用AI算法(去雾、去雨等)修复画面,但在高速行驶的极端条件下,修复效果有限,且非常消耗计算资源。
    • 雨雾: 水滴散射光线,画面模糊,看不清轮廓。
    • 大雪: 雪花覆盖物体,遮挡关键信息(车道线、小障碍物)。
    • 镜头脏污: 雨滴、泥点沾在镜头上,画面失真。
依赖经验,容易出错

AI“猜”距离是基于“见过的”数据。遇到陌生场景(奇特的建筑、罕见的障碍物、特殊天气组合),它可能“没经验”,导致误判距离或者根本发现不了危险。

“猜”的结果不易验证

AI为什么“猜”这个距离?解释起来比较复杂(黑盒),不像激光雷达测距那样是物理定律算出来的,更直观可靠。

算力要求高

为了“猜”得准点,需要运行非常复杂的AI模型和图像处理算法,对车载电脑(芯片)性能要求极高,成本、功耗都上去了。

硬件本身脆弱

摄像头在极端温度、剧烈震动下,镜头可能跑焦、传感器可能出噪点,影响画面质量。

3. 激光雷达的主要优势(为什么还是需要它?)

测距准、快、稳

直接物理测量距离,精度高(毫米级),速度快(每秒发出几十万上百万个激光点)。这是它的核心价值。

光线影响小

自己发光(主动式),弱光、黑夜也能正常工作,提供精确距离。

天气适应性强

虽然雨雪也会干扰激光点(水滴、雪花会反射或吸收激光),但通过硬件(滤光片、优化激光波长)和软件(多脉冲过滤、强度分析)技术,能在一定程度上滤除杂波保持测距功能,比摄像头在同样条件下的表现更稳定可靠

提供真3D结构

点云数据本身就是物体的三维轮廓,用于构建高精度地图和定位非常直接、准确。

可解释性好

点云代表真实物理距离,噪声可以通过物理和数学方法处理,给决策系统提供更确定、可靠的输入。

冗余安全保障

当摄像头因光线、天气、脏污失效或性能下降时,激光雷达是极好的备份传感器,提供关键的距离信息,保证系统安全。毫米波雷达虽然也能测距,但分辨率太低,看不清细节。

4. 纯视觉的强项(并非一无是处)

看懂世界

识别颜色、文字(交通标志)、精细纹理(车道线类型、路面状况)、理解场景语义(这是什么物体?它在干什么?)是它的强项。基于图像的AI在物体分类、语义分割(给图像中每个像素打标签)方面非常成熟。

成本优势

普通摄像头的硬件成本确实远低于高精度激光雷达(虽然工业级摄像头或加红外也不便宜,高算力平台也贵)。

5. 激光雷达的成本与未来

价格在下降

传统机械旋转式激光雷达确实贵(几万到十几万),但新技术(如固态激光雷达)通过芯片化、减少活动部件,正在显著降低成本、缩小体积、提高可靠性。随着量产规模扩大,价格会越来越低。

综合成本未必高

纯视觉为了达到接近的效果,需要昂贵的高性能摄像头、强大的算力平台、复杂的算法开发和数据修正。激光雷达虽然硬件贵点,但数据处理相对简单,算力要求可能更低,整体系统成本差距在缩小。

6. 结论:融合是王道

纯视觉目前无法完全替代激光雷达

在需要高精度、高可靠性距离测量,尤其是面对复杂光照、恶劣天气、安全冗余要求高的场景(高速、城区复杂道路),纯视觉的物理局限(依赖推测、怕光怕天气)难以克服。

激光雷达也替代不了摄像头

它看不懂颜色、文字和精细语义。

1+1>2

把两者的数据融合起来!用摄像头看“是什么”(颜色、语义),用激光雷达量“在哪里”、“有多远”(精确3D位置和距离)。两者取长补短,让自动驾驶系统同时拥有“看懂世界”和“精准测量”的能力,大幅提升感知的准确性、可靠性、鲁棒性(适应各种环境的能力)和安全性

总结

如果把自动驾驶汽车看作是一支探险队:

  • 摄像头是队里的“观察员”:眼神好(光线好时),能详细描述看到的物体(颜色、形状、路牌文字),但天黑、下雨、起雾就看不清楚,尤其不擅长准确判断远距离物体到底离多远。
  • 激光雷达是队里的“测绘员”:不管白天黑夜,都能拿出一把超快的激光尺,精准测量周围每个点的距离,画出精确的3D地图。但他对颜色、文字不敏感,也看不清物体表面的细节纹理。
  • 毫米波雷达是队里的“预警员”:能在恶劣天气下探测到大致的物体和速度,但看不清细节(比如是行人还是邮筒)。
  • 单靠观察员(纯视觉),在复杂环境里很容易“看走眼”,把距离估计错,或者漏掉危险,探险(行车)风险高。
  • 加上测绘员(激光雷达),即使在观察员看不清的时候,测绘员也能提供精准的距离数据,大大提高了探险的安全性。两者配合,信息更全面可靠。
  • 虽然大家希望省钱只用观察员(纯视觉),但目前来看,在要求高的探险任务(高级别自动驾驶)中,测绘员(激光雷达)提供的精准测绘和恶劣环境下的可靠保障,依然是难以替代的。未来测绘员的身价(成本)会下降,观察员的能力(算法)会提升,但让他们搭档干活(融合),才是最稳妥、最安全的选择。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

frostmelody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值