Yolov8改为高光谱多通道图像输入

打算用yolov8作为baseline进行高光谱目标检测,但是数据输入不是3通道,直接用是跑不起来的,所有记录一下如何修改代码使yolov8能够进行多通道图像训练

这里以yolov8n的训练举例,这是官方给的标准训练代码命令:

from ultralytics import YOLO

# Load a model
model = YOLO('yolov8n.yaml')  # build a new model from YAML
model = YOLO('yolov8n.pt')  # load a pretrained model (recommended for training)
model = YOLO('yolov8n.yaml').load('yolov8n.pt')  # build from YAML and transfer weights

# Train the model
results = model.train(data='LED.yaml', epochs=100, imgsz=640)

LED.yaml是我自己的数据集配置文件。

数据集的文件结构如下图所示:

一、配置文件修改

1.数据集配置文件

首先是数据集配置文件,按照如图所示方式创建自己的数据集配置文件:

设置好数据集的路径和数据的检测类别,我这里举例只有1个类别

2.模型配置文件

修改模型配置文件中关于模型定义的参数:

将nc改为数据的类别总数,前面提到的1;再增加ch: 544,这一行指的是第一层卷积层的输入通道数,也就是我使用的高光谱数据的通道数是544

3.训练超参数配置文件

按照需求修改一些训练的超参数:

# Ultralytics YOLO 🚀, AGPL-3.0 license
# Default training settings and hyperparameters for medium-augmentation COCO training

task: detect  # (str) YOLO task, i.e. detect, segment, classify, pose
mode: train  # (str) YOLO mode, i.e. train, val, predict, export, track, benchmark

# Train settings -------------------------------------------------------------------------------------------------------
model:  # (str, optional) path to model file, i.e. yolov8n.pt, yolov8n.yaml
data:  # (str, optional) path to data file, i.e. coco128.yaml
epochs: 100  # (int) number of epochs to train for
time:  # (float, optional) number of hours to train for, overrides epochs if supplied
patience: 50  # (int) epochs to wait for no observable improvement for early stopping of training
batch: 4  # (int) number of images per batch (-1 for AutoBatch)
imgsz: 640  # (int | list) input images size as int for train and val modes, or list[w,h] for predict and export modes
save: True  # (bool) save train checkpoints and predict results
save_period: -1 # (int) Save checkpoint every x epochs (disabled if < 1)
cache: False  # (bool) True/ram, disk or False. Use cache for data loading
device:  # (int | str | list, optional) device to run on, i.e. cuda device=0 or device=0,1,2,3 or device=cpu
workers: 8  # (int) number of worker threads for data loading (per RANK if DDP)
project:  # (str, optional) project name
name:  # (str, optional) experiment name, results saved to 'project/name' directory
exist_ok: False  # (bool) whether to overwrite existing experiment
pretrained: True  # (bool | str) whether to use a pretrained model (bool) or a model to load weights from (str)
optimizer: auto  # (str) optimizer to use, choices=[SGD, Adam, Adamax, AdamW, NAdam, RAdam, RMSProp, auto]
verbose: True  # (bool) whether to print verbose output
seed: 0  # (int) random seed for reproducibility
deterministic: True  # (bool) whether to enable deterministic mode
single_cls: False  # (bool) train multi-class data as single-class
rect: False  # (bool) rectangular training if mode='train' or rectangular validation if mode='val'
cos_lr: False  # (bool) use cosine learning rate scheduler
close_mosaic: 10  # (int) disable mosaic augmentation for final epochs (0 to disable)
resume: False  # (bool) resume training from last checkpoint
amp: True  # (bool) Automatic Mixed Precision (AMP) training, choices=[True, False], True runs AMP check
fraction: 1.0  # (float) dataset fraction to train on (default is 1.0, all images in train set)
profile: False  # (bool) profile ONNX and TensorRT speeds during training for loggers
freeze: None  # (int | list, optional) freeze first n layers, or freeze list of layer indices during training
multi_scale: False   # (bool) Whether to use multi-scale during training
# Segmentation
overlap_mask: True  # (bool) masks should overlap during training (segment train only)
mask_ratio: 4  # (int) mask downsample ratio (segment train only)
# Classification
dropout: 0.0  # (float) use dropout regularization (classify train only)

# Val/Test settings ----------------------------------------------------------------------------------------------------
val: True  # (bool) validate/test during training
split: val  # (str) dataset split to use for validation, i.e. 'val', 'test' or 'train'
save_json: False  # (bool) save results to JSON file
save_hybrid: False  # (bool) save hybrid version of labels (labels + additional predictions)
conf:  # (float, optional) object confidence threshold for detection (default 0.25 predict, 0.001 val)
iou: 0.7  # (float) intersection over union (IoU) threshold for NMS
max_det: 300  # (int) maximum number of detections per image
half: False  # (bool) use half precision (FP16)
dnn: False  # (bool) use OpenCV DNN for ONNX inference
plots: True  # (bool) save plots and images during train/val

# Predict settings -----------------------------------------------------------------------------------------------------
source:  # (str, optional) source directory for images or videos
vid_stride: 1  # (int) video frame-rate stride
stream_buffer: False  # (bool) buffer all streaming frames (True) or return the most recent frame (False)
visualize: False  # (bool) visualize model features
augment: False  # (bool) apply image augmentation to prediction sources
agnostic_nms: False  # (bool) class-agnostic NMS
classes:  # (int | list[int], optional) filter results by class, i.e. classes=0, or classes=[0,2,3]
retina_masks: False  # (bool) use high-resolution segmentation masks
embed:  # (list[int], optional) return feature vectors/embeddings from given layers

# Visualize settings ---------------------------------------------------------------------------------------------------
show: False  # (bool) show predicted images and videos if environment allows
save_frames: False  # (bool) save predicted individual video frames
save_txt: False  # (bool) save results as .txt file
save_conf: False  # (bool) save results with confidence scores
save_crop: False  # (bool) save cropped images with results
show_labels: False  # (bool) show prediction labels, i.e. 'person'
show_conf: True  # (bool) show prediction confidence, i.e. '0.99'
show_boxes: True  # (bool) show prediction boxes
line_width: 1  # (int, optional) line width of the bounding boxes. Scaled to image size if None.

# Export settings ------------------------------------------------------------------------------------------------------
format: torchscript  # (str) format to export to, choices at https://docs.ultralytics.com/modes/export/#export-formats
keras: False  # (bool) use Kera=s
optimize: False  # (bool) TorchScript: optimize for mobile
int8: False  # (bool) CoreML/TF INT8 quantization
dynamic: False  # (bool) ONNX/TF/TensorRT: dynamic axes
simplify: False  # (bool) ONNX: simplify model
opset:  # (int, optional) ONNX: opset version
workspace: 4  # (int) TensorRT: workspace size (GB)
nms: False  # (bool) CoreML: add NMS

# Hyperparameters ------------------------------------------------------------------------------------------------------
lr0: 0.01  # (float) initial learning rate (i.e. SGD=1E-2, Adam=1E-3)
lrf: 0.01  # (float) final learning rate (lr0 * lrf)
momentum: 0.937  # (float) SGD momentum/Adam beta1
weight_decay: 0.0005  # (float) optimizer weight decay 5e-4
warmup_epochs: 3.0  # (float) warmup epochs (fractions ok)
warmup_momentum: 0.8  # (float) warmup initial momentum
warmup_bias_lr: 0.1  # (float) warmup initial bias lr
box: 7.5  # (float) box loss gain
cls: 0.5  # (float) cls loss gain (scale with pixels)
dfl: 1.5  # (float) dfl loss gain
pose: 12.0  # (float) pose loss gain
kobj: 1.0  # (float) keypoint obj loss gain
label_smoothing: 0.0  # (float) label smoothing (fraction)
nbs: 64  # (int) nominal batch size
hsv_h: 0 #.015  # (float) image HSV-Hue augmentation (fraction)
hsv_s: 0 #.7  # (float) image HSV-Saturation augmentation (fraction)
hsv_v: 0 #.4  # (float) image HSV-Value augmentation (fraction)
degrees: 0.0  # (float) image rotation (+/- deg)
translate: 0.1  # (float) image translation (+/- fraction)
scale: 0.5  # (float) image scale (+/- gain)
shear: 0.0  # (float) image shear (+/- deg)
perspective: 0.0  # (float) image perspective (+/- fraction), range 0-0.001
flipud: 0.0  # (float) image flip up-down (probability)
fliplr: 0.5  # (float) image flip left-right (probability)
mosaic: 1.0  # (float) image mosaic (probability)
mixup: 0.0  # (float) image mixup (probability)
copy_paste: 0.0  # (float) segment copy-paste (probability)
auto_augment: randaugment  # (str) auto augmentation policy for classification (randaugment, autoaugment, augmix)
erasing: 0.4  # (float) probability of random erasing during classification training (0-1)
crop_fraction: 1.0  # (float) image crop fraction for classification evaluation/inference (0-1)

# Custom config.yaml ---------------------------------------------------------------------------------------------------
cfg:  # (str, optional) for overriding defaults.yaml

# Tracker settings ------------------------------------------------------------------------------------------------------
tracker: botsort.yaml  # (str) tracker type, choices=[botsort.yaml, bytetrack.yaml]

这里主要把hsv_h,hsv_s和hsv_v三个参数设置为0,不做HSV相关的数据增强,因为并不RGB图像。

二、数据处理代码

1.def verify_image_label(args):

yolov8在训练之前会先读取数据和label进行一个验证,将label信息存进.cache文件里面,方便训练的时候进行调用,但是对于很多通道的数据,在验证的过程会出现问题,而且验证的代码被写成了try+except 函数,导致即使格式不对也不会报错,但是肯定是训练不起来的,所有将miniconda3/envs/yolov8/lib/python3.9/site-packages/ultralytics/data/utils.py文件中的verify_image_labels函数修改如下:

def verify_image_label(args):
    """Verify one image-label pair."""
    im_file, lb_file, prefix, keypoint, num_cls, nkpt, ndim = args
    # Number (missing, found, empty, corrupt), message, segments, keypoints
    nm, nf, ne, nc, msg, segments, keypoints = 0, 0, 0, 0, "", [], None
    try:
        # Verify images
        if os.path.splitext(im_file)[1] == '.tiff':
            im = tifffile.imread(im_file)
            shape = im.shape[:2]
        else:
            im = Image.open(im_file)
            im.verify()  # PIL verify
            shape = exif_size(im)  # image size
        shape = (shape[1], shape[0])  # hw
        assert (shape[0] > 9) & (shape[1] > 9), f"image size {shape} <10 pixels"
        # assert im.format.lower() in IMG_FORMATS, f"invalid image format {im.format}"
        # if im.format.lower() in ("jpg", "jpeg"):
        #     with open(im_file, "rb") as f:
        #         f.seek(-2, 2)
        #         if f.read() != b"\xff\xd9":  # corrupt JPEG
        #             ImageOps.exif_transpose(Image.open(im_file)).save(im_file, "JPEG", subsampling=0, quality=100)
        #             msg = f"{prefix}WARNING ⚠️ {im_file}: corrupt JPEG restored and saved"

        # Verify labels
        if os.path.isfile(lb_file):
            nf = 1  # label found
            with open(lb_file) as f:
                lb = [x.split() for x in f.read().strip().splitlines() if len(x)]
                if any(len(x) > 6 for x in lb) and (not keypoint):  # is segment
                    classes = np.array([x[0] for x in lb], dtype=np.float32)
                    segments = [np.array(x[1:], dtype=np.float32).reshape(-1, 2) for x in lb]  # (cls, xy1...)
                    lb = np.concatenate((classes.reshape(-1, 1), segments2boxes(segments)), 1)  # (cls, xywh)
                lb = np.array(lb, dtype=np.float32)
            nl = len(lb)
            if nl:
                if keypoint:
                    assert lb.shape[1] == (5 + nkpt * ndim), f"labels require {(5 + nkpt * ndim)} columns each"
                    points = lb[:, 5:].reshape(-1, ndim)[:, :2]
                else:
                    assert lb.shape[1] == 5, f"labels require 5 columns, {lb.shape[1]} columns detected"
                    points = lb[:, 1:]
                assert points.max() <= 1, f"non-normalized or out of bounds coordinates {points[points > 1]}"
                assert lb.min() >= 0, f"negative label values {lb[lb < 0]}"

                # All labels
                max_cls = lb[:, 0].max()  # max label count
                assert max_cls <= num_cls, (
                    f"Label class {int(max_cls)} exceeds dataset class count {num_cls}. "
                    f"Possible class labels are 0-{num_cls - 1}"
                )
                _, i = np.unique(lb, axis=0, return_index=True)
                if len(i) < nl:  # duplicate row check
                    lb = lb[i]  # remove duplicates
                    if segments:
                        segments = [segments[x] for x in i]
                    msg = f"{prefix}WARNING ⚠️ {im_file}: {nl - len(i)} duplicate labels removed"
            else:
                ne = 1  # label empty
                lb = np.zeros((0, (5 + nkpt * ndim) if keypoint else 5), dtype=np.float32)
        else:
            nm = 1  # label missing
            lb = np.zeros((0, (5 + nkpt * ndim) if keypoints else 5), dtype=np.float32)
        if keypoint:
            keypoints = lb[:, 5:].reshape(-1, nkpt, ndim)
            if ndim == 2:
                kpt_mask = np.where((keypoints[..., 0] < 0) | (keypoints[..., 1] < 0), 0.0, 1.0).astype(np.float32)
                keypoints = np.concatenate([keypoints, kpt_mask[..., None]], axis=-1)  # (nl, nkpt, 3)
        lb = lb[:, :5]
        return im_file, lb, shape, segments, keypoints, nm, nf, ne, nc, msg
    except Exception as e:
        nc = 1
        msg = f"{prefix}WARNING ⚠️ {im_file}: ignoring corrupt image/label: {e}"
        return [None, None, None, None, None, nm, nf, ne, nc, msg]

2.def load_image(self, i, rect_mode=True):

加载数据的代码需要修改,默认使用cv2.imread会自动读取为3通道图像,修改miniconda3/envs/yolov8/lib/python3.9/site-packages/ultralytics/data/base.py的class BaseDataset(Dataset):中的load_image函数如下:

def load_image(self, i, rect_mode=True):
        """Loads 1 image from dataset index 'i', returns (im, resized hw)."""
        im, f, fn = self.ims[i], self.im_files[i], self.npy_files[i]
        if im is None:  # not cached in RAM
            if fn.exists():  # load npy
                try:
                    im = np.load(fn)
                except Exception as e:
                    LOGGER.warning(f"{self.prefix}WARNING ⚠️ Removing corrupt *.npy image file {fn} due to: {e}")
                    Path(fn).unlink(missing_ok=True)
                    im = cv2.imread(f)  # BGR
            else:  # read image
                if f.endswith('.tiff') or f.endswith('.TIFF'):
                    im = tifffile.imread(f)
                else:
                    im = cv2.imread(f)  # BGR
            if im is None:
                raise FileNotFoundError(f"Image Not Found {f}")

            h0, w0 = im.shape[:2]  # orig hw
            if rect_mode:  # resize long side to imgsz while maintaining aspect ratio
                r = self.imgsz / max(h0, w0)  # ratio
                if r != 1:  # if sizes are not equal
                    w, h = (min(math.ceil(w0 * r), self.imgsz), min(math.ceil(h0 * r), self.imgsz))
                    #im = cv2.resize(im, (w, h), interpolation=cv2.INTER_LINEAR)
                    im = resize(im, (w, h), mode='constant', anti_aliasing=True)
            elif not (h0 == w0 == self.imgsz):  # resize by stretching image to square imgsz
                im = cv2.resize(im, (self.imgsz, self.imgsz), interpolation=cv2.INTER_LINEAR)

            # Add to buffer if training with augmentations
            if self.augment:
                self.ims[i], self.im_hw0[i], self.im_hw[i] = im, (h0, w0), im.shape[:2]  # im, hw_original, hw_resized
                self.buffer.append(i)
                if len(self.buffer) >= self.max_buffer_length:
                    j = self.buffer.pop(0)
                    self.ims[j], self.im_hw0[j], self.im_hw[j] = None, None, None

            return im, (h0, w0), im.shape[:2]

        return self.ims[i], self.im_hw0[i], self.im_hw[i]i], self.im_hw0[i], self.im_hw[i]

注意导入from skimage.transform import resize,用这个resize替换cv2.resize,这个方法可以对多通道的图像进行resize,如果你的图像通道数大于513,则需要修改,如果小于513则用cv2.resize就可以,我也不知道为什么。

3.def affine_transform(self, img, border):

这里是数据增强会有问题,cv2的仿射变换函数只能对3通道的,所以这里换一个库进行仿射变换,先导入:

from skimage.transform import warp, AffineTransform

修改miniconda3/envs/yolov8/lib/python3.9/site-packages/ultralytics/data/augment.py中的class RandomPerspective:的affine_transform函数:

def affine_transform(self, img, border):
        """
        Applies a sequence of affine transformations centered around the image center.

        Args:
            img (ndarray): Input image.
            border (tuple): Border dimensions.

        Returns:
            img (ndarray): Transformed image.
            M (ndarray): Transformation matrix.
            s (float): Scale factor.
        """

        # Center
        C = np.eye(3, dtype=np.float32)

        C[0, 2] = -img.shape[1] / 2  # x translation (pixels)
        C[1, 2] = -img.shape[0] / 2  # y translation (pixels)

        # Perspective
        P = np.eye(3, dtype=np.float32)
        P[2, 0] = random.uniform(-self.perspective, self.perspective)  # x perspective (about y)
        P[2, 1] = random.uniform(-self.perspective, self.perspective)  # y perspective (about x)

        # Rotation and Scale
        R = np.eye(3, dtype=np.float32)
        a = random.uniform(-self.degrees, self.degrees)
        # a += random.choice([-180, -90, 0, 90])  # add 90deg rotations to small rotations
        s = random.uniform(1 - self.scale, 1 + self.scale)
        # s = 2 ** random.uniform(-scale, scale)
        R[:2] = cv2.getRotationMatrix2D(angle=a, center=(0, 0), scale=s)

        # Shear
        S = np.eye(3, dtype=np.float32)
        S[0, 1] = math.tan(random.uniform(-self.shear, self.shear) * math.pi / 180)  # x shear (deg)
        S[1, 0] = math.tan(random.uniform(-self.shear, self.shear) * math.pi / 180)  # y shear (deg)

        # Translation
        T = np.eye(3, dtype=np.float32)
        T[0, 2] = random.uniform(0.5 - self.translate, 0.5 + self.translate) * self.size[0]  # x translation (pixels)
        T[1, 2] = random.uniform(0.5 - self.translate, 0.5 + self.translate) * self.size[1]  # y translation (pixels)

        # Combined rotation matrix
        M = T @ S @ R @ P @ C  # order of operations (right to left) is IMPORTANT
        # Affine image
        if (border[0] != 0) or (border[1] != 0) or (M != np.eye(3)).any():  # image changed
            if self.perspective:
                img = cv2.warpPerspective(img, M, dsize=self.size, borderValue=(114, 114, 114))
            else:  # affine
                #img = cv2.warpAffine(img, M[:2], dsize=self.size, borderValue=(114, 114, 114))
                channel_list = cv2.split(img)
                transformed_channels = [cv2.warpAffine(channel, M[:2], dsize=self.size, borderValue=(114, 114, 114)) for channel in channel_list]
                img = cv2.merge(transformed_channels)
        return img, M, s

4.class LetterBox:

这里也是数据增强部分的代码出问题,直接把miniconda3/envs/yolov8/lib/python3.9/site-packages/ultralytics/data/augment.py的类LetterBox中的函数def __call__(self, labels=None, image=None):改为如下所示:

def __call__(self, labels=None, image=None):
        """Return updated labels and image with added border."""
        if labels is None:
            labels = {}
        img = labels.get("img") if image is None else image
        shape = img.shape[:2]  # current shape [height, width]
        new_shape = labels.pop("rect_shape", self.new_shape)
        if isinstance(new_shape, int):
            new_shape = (new_shape, new_shape)

        # Scale ratio (new / old)
        r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
        if not self.scaleup:  # only scale down, do not scale up (for better val mAP)
            r = min(r, 1.0)

        # Compute padding
        ratio = r, r  # width, height ratios
        new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
        dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1]  # wh padding
        if self.auto:  # minimum rectangle
            dw, dh = np.mod(dw, self.stride), np.mod(dh, self.stride)  # wh padding
        elif self.scaleFill:  # stretch
            dw, dh = 0.0, 0.0
            new_unpad = (new_shape[1], new_shape[0])
            ratio = new_shape[1] / shape[1], new_shape[0] / shape[0]  # width, height ratios

        if self.center:
            dw /= 2  # divide padding into 2 sides
            dh /= 2

        if shape[::-1] != new_unpad:  # resize
            img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR)
        top, bottom = int(round(dh - 0.1)) if self.center else 0, int(round(dh + 0.1))
        left, right = int(round(dw - 0.1)) if self.center else 0, int(round(dw + 0.1))

        if img.shape[2] > 3:
            border_img = np.ones((img.shape[0]+top+bottom, img.shape[1]+left+right, img.shape[2]), dtype=img.dtype)*114
            border_img[top:img.shape[0]+top, left:img.shape[1]+left] = img
            img = border_img
        else:
            img = cv2.copyMakeBorder(
                img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=(114, 114, 114)
            )  # add border
        if labels.get("ratio_pad"):
            labels["ratio_pad"] = (labels["ratio_pad"], (left, top))  # for evaluation

        if len(labels):
            labels = self._update_labels(labels, ratio, dw, dh)
            labels["img"] = img
            labels["resized_shape"] = new_shape
            return labels
        else:
            return img

三、画图代码

1.def plot_images

画图代码里面也是默认使用通道数3,导致很多函数报错,在miniconda3/envs/yolov8/lib/python3.9/site-packages/ultralytics/utils/plotting.py的函数plot_images中将这一行:

    # Build Image
    mosaic = np.full((int(ns * h), int(ns * w), 3), 255, dtype=np.uint8)  # init

改为:

    # Build Image
    mosaic = np.full((int(ns * h), int(ns * w), images[0].shape[0]), 255, dtype=np.uint8)  # init

2.class Annotator:

在这个类的init里面会进行可视化操作,但是对于多通道图像无法保存为图片,所以就报错,这里可以直接用前3个通道来代替可视化图像,也可以用其他的通道,根据个人自由选择。在120行的

if self.pil:  # use PIL

后面加上两行:

            if im.shape[2] > 3:  # not RGB
                im = im[:, :, :3]

好了,到这里差不多就可以训练了

四、训练后验证

训练完成之后还会有一个验证的过程,不改的话也会报错,首先在miniconda3/envs/yolov8/lib/python3.9/site-packages/ultralytics/cfg/default.yaml这个文件里面增加一个超参数channel,如图所示:

然后在miniconda3/envs/yolov8/lib/python3.9/site-packages/ultralytics/engine/validator.py的类class BaseValidator:的def __call__(self, trainer=None, model=None):中修改:

model.warmup(imgsz=(1 if pt else self.args.batch, 3, imgsz, imgsz))  # warmup

为:

model.warmup(imgsz=(1 if pt else self.args.batch, self.args.channel, imgsz, imgsz))  # warmup

  • 40
    点赞
  • 82
    收藏
    觉得还不错? 一键收藏
  • 72
    评论
### 回答1: 高光谱图像可以通过使用技术,如光谱反褶积(Spectral Unmixing),光谱拆分(Spectral Deconvolution),光谱滤波(Spectral Filtering)等来从多光谱图像中提取出高光谱信息。 ### 回答2: 多光谱图像是一种包含了多个波段或频带的图像,它可以捕捉到物体的不同特征。而高光谱图像则是多光谱图像的一种延伸,它更加细致、分辨率更高。那么,如何将多光谱图像转变为高光谱图像呢? 首先,我们需要了解多光谱图像是如何获取的。多光谱图像一般使用多个传感器或相机在不同波段或频带下进行拍摄,形成一个波段堆叠的图像。每个波段对应着特定的颜色和频率范围。 在将多光谱图像转换为高光谱图像时,需要进行一系列图像处理和分析步骤。 第一步是去除噪声。多光谱图像中可能会存在一些噪声,这些噪声会影响到高光谱图像的精确度。因此,需要采用去噪技术,如中值滤波或均值滤波等方法,提高图像质量。 第二步是图像配准。由于多个传感器或相机在不同的位置和时间获取图像,为了使得多光谱图像高光谱图像能够对应起来,需要进行图像配准。图像配准可以通过特征提取和匹配算法实现,使得多光谱图像高光谱图像具备相同的空间参考。 第三步是波段融合。多光谱图像中的每个波段对应着不同的特征,而高光谱图像需要捕捉到更多细节和特征。因此,需要将多光谱图像的波段进行融合,使得高光谱图像能够包含更多的频带信息。 最后,可以利用各种图像处理和分析算法对高光谱图像进行进一步的应用,如分类、分割、目标检测等。这些算法可以利用高光谱图像的丰富信息,提取出更多的地物特征和属性。 ### 回答3: 多光谱图像可以通过一系列处理方式转变为高光谱图像。 首先,多光谱图像是包含有限数量的波段信息的图像,而高光谱图像则是包含更多波段信息的图像。因此,需要对多光谱图像进行波段增加的处理。 其次,可以采用插值或者光谱反演等方法,对多光谱图像中缺失的波段进行恢复或者推测。插值方法可以通过已知的波段信息和相邻波段像素的关系进行推算,填补缺失的波段像素值。光谱反演方法则是根据多光谱图像的其他波段信息和待恢复的波段的统计关系,通过数学推算得到缺失波段的像素值。 此外,可以使用波段选择和特征提取等方法来选择和提取多光谱图像中的特征波段。根据不同的应用需求,通过对多光谱图像中每个波段像素进行特征分析,选择具有代表性和重要性的波段,以获得高光谱图像。 最后,还可以使用数据融合和超分辨率重建等方法来进一步提高高光谱图像的分辨率和质量。数据融合可以将多光谱图像与其他类型的图像数据进行融合,利用各种数据的优势来提高高光谱图像的质量。超分辨率重建则可以通过图像处理算法,根据已有的多光谱图像信息,重建出更高分辨率的图像。这样,就可以得到更精细和更具信息量的高光谱图像。 综上所述,多光谱图像可以通过波段增加、插值恢复、波段选择和特征提取、数据融合以及超分辨率重建等一系列处理方式,变成高光谱图像,以满足不同应用领域对高光谱图像的需求。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 72
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值