机器人绑架问题?

机器人定位分为三大问题:“全局定位”、“位姿跟踪”和“绑架劫持”。

“全局定位”指初始位置未知,机器人靠自身运动确定自己在地图中的位姿。

“位姿跟踪”是已知自身位姿或者已经通过“全局定位”得到了一个较好的位姿估计,在后续运动时补偿精度较差的运动控制误差;

“绑架劫持”是机器人在已知自身位姿的情况下,得到了一个错误的位姿信息或者外界将其放到另外一个位姿,而里程计信息给出了错误的信息甚至没有给出控制信息。

机器人的“绑架”问题是指在缺少它之前的位置信息情况下,去确定机器人的当前位姿,例如当机器人被安置在一个已经构建好地图的环境中,但是并不知道它在地图中的相对位置,或者在移动过程中,由于传感器的暂时性功能故障或相机的快速移动,都导致机器人先前的位置信息的丢失,就像人质的眼睛被蒙上黑布条,拉上集装箱被运送到了未知的地方,此时,人质就无法给自己定位了。

"绑架问题"可以分为初始化绑架和追踪丢失状态绑架。
初始化绑架可以阐述为一种通常状况初始化问题,可使用蒙特卡洛估计器,即粒子滤波方法,重新分散粒子到三维位形空间里面,被里程信息和随机扰动不断更新,初始化粒子聚集到/收敛到可解释观察结果的区域。
追踪丢失状态绑架,即在绑架发生之前,系统已经保存当前状态,则可以使用除视觉传感器之外的其他的传感器作为候补测量设备。
机器人绑架问题(Kidnapped Robot Problem)主要是指自主机器人(Autonomous robot)在执行任务时定位系统失效的情况。

一般来说定位系统失效有三种可能性:

初始位置未知/初始位置有误
感知到的运动与实际运动不符
在运动过程中找不到用来定位的地标
一般可以利用particle filter解决该问题,初始化时将particles平均分布在整个状态空间中,在每次循环结束后,再增加一些平均分布的particles,从而定位具体的位置

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值