基于YOLOv5算法实现人数统计和人脸识别并部署于开发板rk3588

文章详细介绍了如何利用YOLOv5模型进行人数统计功能的实现,从数据集准备、模型训练到模型转换和在瑞芯微RK3588开发板上的部署。过程中涉及到模型的onnx转换和rknn文件的生成,以利用NPU进行推理加速。此外,还提到了模型的剪枝和量化优化,以及在AI服务器上的部署情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、问题背景

在深度学习中,目标识别问题是我们所熟知的最经典最重要的问题之一。目标识别需要在一幅大图片中定位到多个目标的位置和类别。目标检测的应用范围很广,比如在超市通过视频检测消费者的进出、工业制造业领域中的异常行为检测等。另一个典型的场景是,在自动驾驶时车辆需要定位视线范围内的所有物体,并识别其类别以判断危险程度。这都给目标检测这一领域提供了丰富的应用空间。所以,在本次实验中,我根据课堂场景使用YOLO系列算法实现人数统计与人脸识别功能,在此基础上将其算法模型部署于开发板上,实现项目的落地测试。

二、模型介绍

1、YOLO简介

YOLOv1是典型的目标检测one stage方法,在YOLO算法中,核心思想 就是把物体检测(object detection)问题处理成回归问题,用一个卷积神经网络结构就可以从输入图像直接预测bounding box和类别概率。用回归的方法去做目标检测,执行速度快,达到非常高效的检测,其背后的原理和思想也非常简单。相对于R-CNN系列算法将检测问题分解为划定位置和判定类别分两步做,YOLO系列算法没有显式寻找区域的过程,可以实现端到端的快速预测,即输入一幅图片,在输出中给出若干目标的位置、类别和置信度。
而相对于同样是一步到位的SSD算法,YOLO系列的特点在于算法一经发出,便有各种各样的人和团队对他进行更新迭代。通过不断地更新迭代模型版本,YOLO也得到了效果上持续的提升和更广泛的关注。

2、YOLOv5模型介绍

我们首先介绍一下最原始的YOLO模型,然后简要介绍一下YOLOv5版本的改进,主要通过具体的例子一起看看怎么把YOLOv5模型用好。

YOLOv1的网络结构并没有什么特别,和我们熟悉的图像分类一样都是卷积神经网络,但它的输出向量却不太一样。如果把神经网络看作我们熟悉的回归分析问题,那YOLO做的事情就是改变了模型响应Y的结构,而这也奠定了YOLO目标检测的基础。YOLO的输出向量不仅包括目标的类别,还有边界框的坐标和预测的置信度。它的核心思想在于把图像分割成S*S的若干个小块,在每个格子中预先放置两个边界框,通过卷积神经网络预测得到每个边界框的坐标、类别和置信度,然后通过非极大值抑制获得局部唯一的预测框。

在这里插入图片描述
经过YOLO算法的迭代发展,YOLOv5的网络结构博采众长,已经变得格外复杂,主要包括在Backbone中通过卷积和池化网络结构提取特征,在Neck部分不断地和之前提取的特征进行融合,Head部分则是用来进行最终的检测和输出,如下图所

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值