机器学习----贝叶斯分类器(贝叶斯决策论和极大似然估计)

本文介绍了贝叶斯决策论在概率框架下的应用,讨论了后验概率最大化的意义,并详细阐述了极大似然估计在生成模型中的作用,解释了频率主义和贝叶斯学派在参数估计上的不同观点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

贝叶斯决策论

贝叶斯决策论(Bayesian decision theory)是概率框架下实施决策的基本方法。在所有相关概率都已知的理想情况下,贝叶斯决策论考虑如何基于这些概率和误判断来选择最优的类别标记。
假设有N种可能的类别标记,即 Y={ c1,c2,...,cn} λij 是将一个真实标记为 cj 的样本误分类为 ci 所产生的损失。基于后验概率 P(ci|x) 可获得将样本x分类为 ci 所产生的期望损失(expected loss),即在样本x上的“条件风险”(conditional risk)

R(ci|x)=j=1NλijP(cj|x)

我们的任务是寻找一个判定准则
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值