论文笔记:Dual Path Networks

这篇论文笔记探讨了 Dual Path Networks(DPN)的设计原理,通过对ResNet和DenseNet的分析,指出RNN的表达方式在深度学习中的应用。DPN旨在解决ResNet中特征重复计算和DenseNet中特征利用率低的问题,通过结合两者的优点,实现了更高效的特征学习和传播。
摘要由CSDN通过智能技术生成

首先分析了 ResNet 和 DenseNet。 借鉴RNN的表达方式。

k: 当前处于哪个步

t:第t步

ht: 第t步的隐藏状态

:在第k步中,提取第t状态特征的函数

gk:第k步,转换聚合特征的函数

 

如果 , 那么可以写成:

简化成:

其中,。 如果, 那就是RNN。 如果不共享,就是ResNet。

 

如果  不满足,就是DenseNet

 

这就存在问题。因为共享获得不了新特征,不共享又会造成计算冗余(有的特征后面根本用不着),所以提出DPN.

各来一点。

 

c就是为了说明DenseNet可以变成ResNet

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值