首先分析了 ResNet 和 DenseNet。 借鉴RNN的表达方式。
k: 当前处于哪个步
t:第t步
ht: 第t步的隐藏状态
:在第k步中,提取第t状态特征的函数
gk:第k步,转换聚合特征的函数
如果 , 那么可以写成:
简化成:
其中,。 如果, 那就是RNN。 如果不共享,就是ResNet。
如果 不满足,就是DenseNet
这就存在问题。因为共享获得不了新特征,不共享又会造成计算冗余(有的特征后面根本用不着),所以提出DPN.
各来一点。
c就是为了说明DenseNet可以变成ResNet