MIT 线性代数 Linear Algebra 23: 特征值的应用(矩阵的指数函数,解微分方程)

上一讲我们主要讲了差分方程 (difference equation) 和矩阵的幂 (powers of matrix) 之间的联系。主要的 insight 是把差分方程的每次递归, i.e., 从 { a k ,   a k − 1 ,   . . . } \{a_k,~a_{k-1},~...\} {ak, ak1, ...} a k + 1 a_{k+1} ak+1, 表示成一种矩阵关系。这样一来,若干次递归之后的结果相当于初始条件乘以一个矩阵的 K K K 次方。而差分方程最后的解是否 stable 取决于矩阵的特征值是否在复平面的单元圆中。

这一讲 Prof. Strang 着重讲矩阵和其特征值的在微分方程 (differential equations) 中的应用。

矩阵的指数函数 e A e^{\bm{A}} eA

学过高等数学都知道泰勒展开,比如
1 1 − x = 1 + x + x 2 + x 3 + . . . ,     ( if  ∣ x ∣ < 1 ) \frac{1}{1-x} = 1+x+x^2+x^3+...,~~~(\text{if}~|x|<1) 1x1=1+x+x2+x3+...,   (if x<1)

e x = 1 + x + 1 2 ! x 2 + 1 3 ! x 3 + . . . e^x = 1+x+\frac{1}{2!} x^2+\frac{1}{3!}x^3+... ex=1+x+2!1x2+3!1x3+...

同样的,矩阵也可以进行同样的操作

( I − A ) − 1 = 1 + A + A 2 + A 3 + . . . ,     ( if  A ∞ → 0 ) (\bm{I}-\bm{A})^{-1}=1+\bm{A}+\bm{A}^2+\bm{A}^3+...,~~~(\text{if}~\bm{A}^\infty\to 0) (IA)1=1+A+A2+A3+...,   (if A0)

e A = I + A + 1 2 ! A 2 + 1 3 ! A 3 + . . .        ( 1 ) e^\bm{A} = \bm{I}+\bm{A}+\frac{1}{2!} \bm{A}^2+\frac{1}{3!}\bm{A}^3+...~~~~~~(1) eA=I+A+2!1A2+3!1A3+...      (1)

这样就引出了矩阵的指数函数的定义。特别的,当 A \bm{A} A n n n 个线性无关的特征向量时,我们可以把 A \bm{A} A 相似对角化
A = S Λ S − 1 \bm{A=S\Lambda S^{-1}} A=SΛS1

e A = I + S Λ S − 1 + 1 2 ! S Λ 2 S − 1 + 1 3 ! S Λ 3 S − 1 + . . . = S e Λ S − 1      ( 2 ) e^\bm{A} = \bm{I}+\bm{S\Lambda S^{-1}}+\frac{1}{2!} \bm{S\Lambda^2 S^{-1}}+\frac{1}{3!}\bm{S\Lambda^3 S^{-1}}+...=\bm{Se^\Lambda S^{-1}}~~~~(2) eA=I+SΛS1+2!1SΛ2S1+3!1SΛ3S1+...=SeΛS1    (2)

看到没,只要 A \bm{A} A 可以对角化,我们便能把 e A e^\bm{A} eA 转换为 S e Λ S − 1 \bm{Se^\Lambda S^{-1}} SeΛS1. 这样做有什么好处尼?当然是 e Λ e^\Lambda eΛ 比较简单啦,请看
e Λ = I + Λ + 1 2 ! Λ 2 + 1 3 ! Λ 3 + . . . = [ e λ 1 0 0 ⋯ 0 e λ 2 0 ⋯ 0 0 e λ 3 ⋯ ⋮ ⋮ ⋮ ⋱ ]      ( 3 ) e^\Lambda=\bm{I}+\Lambda+\frac{1}{2!} \Lambda^2+\frac{1}{3!}\Lambda^3+... =\begin{bmatrix} e^{\lambda_1} & 0 & 0 & \cdots \\ 0 & e^{\lambda_2} & 0 & \cdots \\ 0 & 0 & e^{\lambda_3} & \cdots \\ \vdots & \vdots & \vdots & \ddots \\ \end{bmatrix}~~~~(3) eΛ=I+Λ+2!1Λ2+3!1Λ3+...=eλ1000eλ2000eλ3    (3)

也就是说,对角阵的指数函数直接就是各个对角线元素的分别求指数后得到的矩阵。

differential equation

好,我们先来看看这样一个一阶微分方程
d   u d   t = A u        ( 4 ) \frac{d\,\bm{u}}{d\,t}=\bm{Au}~~~~~~(4) dtdu=Au      (4)

其中 A \bm{A} A 可以相似对角化; u \bm{u} u 是一个列向量,它实际上有 n n n 个随时间变化的entries,但是每个entry的变化率都被 matrix A \bm{A} A 搅在了一起,相互关联。

为了更具体些,我们可以看一个例子,
A = [ − 1 2 1 − 2 ] \bm{A}=\begin{bmatrix} -1 & 2 \\ 1 & -2 \\ \end{bmatrix} A=[1122]

展开微分方程
{ d   u 1 d   t = − u 1 + 2 u 2 d   u 2 d   t = u 1 − 2 u 2 \begin{cases} \frac{d\,{u}_1}{d\,t}=-{u_1} + 2{u_2}\\ \frac{d\,{u}_2}{d\,t}={u_1} - 2 {u_2} \\ \end{cases} {dtdu1=u1+2u2dtdu2=u12u2

可以看出这是一个线性系统,有两个变量 u 1 {u}_1 u1 u 2 u_2 u2 且两者的变化率相互 couple 在一起。稍后,我们将解出这个例子,但是在此之前,我们先看看我们解微分方程的思路。


Train of thought: 为了解 (4),我们可以尝试把 u \bm{u} u A \bm{A} A 一组线性无关的特征向量构成的矩阵表示出来,i.e.,
u = S v \bm{u}=\bm{Sv} u=Sv

因此 (4) 是可以重新写为
S d   v d   t = A S v \bm{S}\frac{d\,\bm{v}}{d\,t}=\bm{ASv} Sdtdv=ASv

d   v d   t = S − 1 A S v = Λ v      ( 5 ) \frac{d\,\bm{v}}{d\,t}=\bm{S}^{-1}\bm{ASv}=\bm{\Lambda v}~~~~(5) dtdv=S1ASv=Λv    (5)

可以看出, (4) 式被顺利地转换为 (5) 式,其中,(5) 式的系数矩阵是对角阵 – 这就意味着两个变量的变化被分割开了 – 微分方程因此可解。


Solution: 对于每一个decoupled 方程
d   v i ( t ) d   t = λ i v i ( t ) \frac{d\,v_i(t)}{d\,t}=\lambda_i v_i(t) dtdvi(t)=λivi(t)

我们可以解出
v i ( t ) = c e λ i t v_i(t)=ce^{\lambda_i t} vi(t)=ceλit

其中常数 c = v i ( 0 ) c=v_i(0) c=vi(0) 由初始条件
v ( 0 ) = S − 1 u ( 0 ) \bm{v}(0)=\bm{S}^{-1}\bm{u}(0) v(0)=S1u(0)

各项给出。

To summarize,
v ( t ) = [ v 1 ( 0 ) e λ 1 t v 2 ( 0 ) e λ 2 t ⋯ v n ( 0 ) e λ n t ] = [ e λ 1 t 0 0 ⋯ 0 e λ 2 t 0 ⋯ 0 0 e λ 3 t ⋯ ⋮ ⋮ ⋮ ⋱ ] [ v 1 ( 0 ) v 2 ( 0 ) ⋯ v n ( 0 ) ] = e Λ t v ( 0 ) \bm{v}(t)=\begin{bmatrix} v_1(0)e^{\lambda_1 t} \\ v_2(0)e^{\lambda_2 t} \\ \cdots \\ v_n(0)e^{\lambda_n t} \\ \end{bmatrix}=\begin{bmatrix} e^{\lambda_1 t} & 0 & 0 & \cdots \\ 0 & e^{\lambda_2 t} & 0 & \cdots \\ 0 & 0 & e^{\lambda_3 t} & \cdots \\ \vdots & \vdots & \vdots & \ddots \\ \end{bmatrix} \begin{bmatrix} v_1(0) \\ v_2(0) \\ \cdots \\ v_n(0) \\ \end{bmatrix}=e^{\Lambda t} \bm{v}(0) v(t)=v1(0)eλ1tv2(0)eλ2tvn(0)eλnt=eλ1t000eλ2t000eλ3tv1(0)v2(0)vn(0)=eΛtv(0)

u = S v = S e Λ t S − 1 u ( 0 ) = e A t u ( 0 )      ( 6 ) \bm{u}=\bm{Sv}=\bm{S}e^{\Lambda t} \bm{S}^{-1}\bm{u}(0)=e^{\bm{A}t}\bm{u}(0)~~~~(6) u=Sv=SeΛtS1u(0)=eAtu(0)    (6)

这便是微分方程的解。


好,让我们回到本节开始时候的例子
d   u d   t = A u \frac{d\,\bm{u}}{d\,t}=\bm{Au} dtdu=Au

A = [ − 1 2 1 − 2 ] ,    u ( 0 ) = [ 1 0 ] \bm{A}=\begin{bmatrix} -1 & 2 \\ 1 & -2 \\ \end{bmatrix},~~ \bm{u}(0)=\begin{bmatrix} 1 \\ 0 \\ \end{bmatrix} A=[1122],  u(0)=[10]

因为我们已经知道了微分方程的解由 (6) 式给出,因此我们应该分析 A \bm{A} A 的对角化矩阵 S \bm{S} S. 首先, A \bm{A} A 不满秩,因此一定有一个 λ 1 = 0 \lambda_1=0 λ1=0, 由矩阵的trace知道另一个 λ 2 = − 3 \lambda_2=-3 λ2=3. 我们可以进一步把他们对应的特征向量求出
λ 1 = 0 ,    x 1 = [ 2 , 1 ] ⊤ \lambda_1=0,~~\bm{x_1}=[2,1]^\top λ1=0,  x1=[2,1]

λ 2 = − 3 ,    x 2 = [ 1 , − 1 ] ⊤ \lambda_2=-3,~~\bm{x_2}=[ 1,-1]^\top λ2=3,  x2=[1,1]

因此 A \bm{A} A 可以被相似对角化为
A = S Λ S − 1 = [ 2 1 1 − 1 ] [ 0 0 0 − 3 ] [ 1 / 3 − 1 − 1 − 2 / 3 ] \bm{A}=\bm{S\Lambda S^{-1}}=\begin{bmatrix} 2 & 1\\ 1 & -1\\ \end{bmatrix} \begin{bmatrix} 0 & 0\\ 0 & -3\\ \end{bmatrix} \begin{bmatrix} 1/3 & -1\\ -1 & -2/3\\ \end{bmatrix} A=SΛS1=[2111][0003][1/3112/3]

代入 (6), 我们有
u = S e Λ t S − 1 u ( 0 ) = S Λ S − 1 = [ 2 1 1 − 1 ] [ e 0 t 0 0 e − 3 t ] [ 1 / 3 1 / 3 1 / 3 − 2 / 3 ] [ 1 0 ] \bm{u}=\bm{S}e^{\Lambda t} \bm{S}^{-1}\bm{u}(0)=\bm{S\Lambda S^{-1}}=\begin{bmatrix} 2 & 1\\ 1 & -1\\ \end{bmatrix} \begin{bmatrix} e^{0t} & 0\\ 0 & e^{-3t}\\ \end{bmatrix} \begin{bmatrix} 1/3 & 1/3\\ 1/3 & -2/3\\ \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ \end{bmatrix} u=SeΛtS1u(0)=SΛS1=[2111][e0t00e3t][1/31/31/32/3][10]

= 1 3 [ 2 1 1 − 1 ] [ 1 0 0 e − 3 t ] [ 1 1 ] = 1 3 [ 2 1 1 − 1 ] [ 1 e − 3 t ] =\frac{1}{3}\begin{bmatrix} 2 & 1\\ 1 & -1\\ \end{bmatrix} \begin{bmatrix} 1 & 0\\ 0 & e^{-3t}\\ \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ \end{bmatrix}=\frac{1}{3}\begin{bmatrix} 2 & 1\\ 1 & -1\\ \end{bmatrix} \begin{bmatrix} 1\\ e^{-3t}\\ \end{bmatrix} =31[2111][100e3t][11]=31[2111][1e3t]

= 1 3 [ 2 1 ] + 1 3 e − 3 t [ 1 − 1 ] =\frac{1}{3}\begin{bmatrix} 2 \\ 1 \\ \end{bmatrix}+\frac{1}{3}e^{-3t}\begin{bmatrix} 1\\ -1\\ \end{bmatrix} =31[21]+31e3t[11]


对于上面这个例子,Prof. Strang是直接给出一个通解 (两个特解的linear combination)
u = e A t u ( 0 ) = c 1 e λ 1 t x 1 + c 2 e λ 2 t x 2       ( 7 ) \bm{u}=e^{\bm{A} t} \bm{u}(0)=c_1e^{\lambda_1 t}\bm{x_1}+c_2e^{\lambda_2 t}\bm{x_2}~~~~~(7) u=eAtu(0)=c1eλ1tx1+c2eλ2tx2     (7)

其中常数 c 1 c_1 c1 c 2 c_2 c2 由初始条件 u ( 0 ) \bm{u}(0) u(0) 给出。

他主要想对比上节课给出的difference equation的解
F k = c 1 λ 1 k v 1 + c 2 λ 2 k v 2 F_k= c_1\lambda_1^k\bm{v_1}+c_2\lambda_2^k\bm{v_2} Fk=c1λ1kv1+c2λ2kv2

A k → 0 \bm{A}^k\to 0 Ak0 的条件是特征值在单位圆内,而 e A t → 0 e^{\bm{A t}}\to 0 eAt0 的条件是 A \bm{A} A 所有特征值的实部都小于 0 (如下图所示)。 从 (7) 可以看出, λ 1 = 0 \lambda_1=0 λ1=0 因此那一项保留下来了, λ 2 < 0 \lambda_2<0 λ2<0 因此那一项随着 t t t 的增大变成了 0 0 0. 而如果有复数特征值 λ = a + b j \lambda=a+bj λ=a+bj,
∣ e a + b j ∣ = ∣ e a ∣ ∣ e j b ∣ = ∣ e a ∣ |e^{a+bj}|=|e^a| |e^{jb}|=|e^a| ea+bj=eaejb=ea

换句话说, e j b e^{jb} ejb 并不改变模值,只是让特征向量 x \bm{x} x 的每个 entry 忽大忽小而已 (最终模值不变)。 因此,正如下入所示,如果想要 e A t → 0 e^{\bm{A t}}\to 0 eAt0 A \bm{A} A 所有特征值的实部都必须小于 0。如果有一个 λ = 0 \lambda=0 λ=0, 则那一项的系数会保留下来,系统会慢慢进入steady state (上面那个例子就是如此)。

在这里插入图片描述

高阶微分方程

在这节课的最后, Prof. Strang 给出了高阶微分方程的解题思路。

比如我们有一个二阶微分方程
y ′ ′ + b y ′ + k y = 0 y''+by'+ky=0 y+by+ky=0

解决技巧在于构造新函数 (就像上节中的斐波那契数列一样)。构造
u = [ y ′ y ] \bm{u}=\begin{bmatrix} y'\\ y \end{bmatrix} u=[yy]

我们便能得到
u ′ = [ y ′ ′ y ′ ] = [ − b − k 1 0 ] [ y ′ y ] = [ − b − k 1 0 ] u \bm{u'}=\begin{bmatrix} y''\\ y' \end{bmatrix}=\begin{bmatrix} -b & -k\\ 1 & 0 \end{bmatrix}\begin{bmatrix} y'\\ y \end{bmatrix}=\begin{bmatrix} -b & -k\\ 1 & 0 \end{bmatrix}\bm{u} u=[yy]=[b1k0][yy]=[b1k0]u

这样便把一个二阶微分方程转换为了一阶微分方程,用这节的通解即可以解决。

如果更高阶尼?比如五阶?方法还是一样的,构造
u = [ y ′ ′ ′ ′ y ′ ′ ′ y ′ ′ y ′ y ] \bm{u}=\begin{bmatrix} y''''\\ y''' \\ y''\\ y'\\ y \end{bmatrix} u=yyyyy

即可不断地降维.

That’s the end of today’s lecture~

  • 3
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 《线性代数第五版中译版》是由MIT出版社出版的一本线性代数教材。本书是对线性代数的全面介绍,适用于大学本科生以及研究生学习线性代数的教材。 该书包含了线性代数的基本概念和原理,如向量空间、矩阵、线性变换等。书中介绍了线性代数的基本性质和定理,并配有大量的示例和练习题,帮助读者理和掌握线性代数的基础知识和方法。 本书的特点之一是注重理论与实践的结合。书中不仅介绍了线性代数的理论基础,还提供了丰富的应用实例,包括在工程、计算机科学、物理学等领域中的具体应用。通过这些实例,读者可以更加深入地理线性代数的实际应用和意义。 此外,本书的教学风格也是其亮点之一。作者在书中使用了清晰简洁的语言,结合图表和例子,以简单易懂的方式讲复杂的概念和定理,使得读者能够轻松理和掌握线性代数的内容。 总的来说,《线性代数第五版中译版》是一本全面、实用且易于理线性代数教材。无论是想要学习线性代数的初学者,还是希望加深对线性代数理论和实践的了的读者,都可以从中获得丰富的知识和实践经验。这本书是学习线性代数的良好参考资料,也是教师和学生们的理想教材。 ### 回答2: 《线性代数第五版中译版》(Introduction to Linear Algebra, Fifth Edition,MIT中译版)是一本经典的线性代数教材。由Gilbert Strang撰写,被誉为线性代数教材中的圣经。 这本教材是麻省理工学院(MIT)的线性代数课程的教材,也是许多大学线性代数课程使用的教材之一。由于其深入浅出的风格和丰富的例子和习题,这本教材非常适合初学者学习线性代数。 《线性代数第五版中译版》的内容涵盖了线性代数的基本概念、理论和应用。从矩阵和向量的基本操作开始,逐步介绍了线性方程组、矩阵运算、矩阵的秩、线性变换等内容。书中还包含了对特征值和特征向量的详细释,以及对二次型和正交变换的讲。 此外,这本教材还介绍了线性代数在实际问题中的应用。无论是金融、物理、工程还是计算机科学领域,线性代数都有着广泛的应用。这本教材通过丰富的应用示例和实际问题的讨论,帮助读者将线性代数的理论联系到实际应用中。 总之,《线性代数第五版中译版》是一本经典的线性代数教材,它不仅提供了系统完整的线性代数知识,还注重将理论与实际应用结合起来,让读者能够更好地理应用线性代数的理论。无论是初学者还是专业人士,都能从中获得实质性的知识和帮助。 ### 回答3: 《线性代数第五版中译版》是由麻省理工学院 (MIT) 出版的一本线性代数教材的中文翻译版。这本教材主要是为大学本科生和研究生准备的,旨在介绍线性代数的基本概念、理论和应用。 《线性代数第五版中译版》全书内容丰富,包含了线性代数的核心知识和重要概念。它从向量、线性方程组和矩阵开始,逐步介绍了向量空间、线性变换、特征值和特征向量等内容。教材采用了清晰的数学表达和逻辑结构,以帮助读者理抽象的数学概念和定理。 此外,这本教材还特别关注线性代数应用领域。通过真实世界的例子和问题,它展示了线性代数在计算机科学、物理学、经济学等多个学科中的重要性。它还涵盖了矩阵、线性规划和最小二乘法等实际问题的决方法。 《线性代数第五版中译版》以其全面的内容、清晰的讲和实际应用的案例而闻名。它可以作为一本理论和实践相结合的线性代数教材,适用于希望深入学习线性代数并将其应用于实际问题的读者。 总之,这本教材是一本权威的线性代数教材,对于希望学习线性代数的读者来说是一本宝贵的资源。它将帮助读者建立线性代数的基础知识,培养抽象思维和问题决能力,并提供实际应用的例子,让读者更好地理应用线性代数的概念和方法。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值