MIT 线性代数 Linear Algebra 23: 特征值的应用(矩阵的指数函数,解微分方程)

上一讲我们主要讲了差分方程 (difference equation) 和矩阵的幂 (powers of matrix) 之间的联系。主要的 insight 是把差分方程的每次递归, i.e., 从 { a k ,   a k − 1 ,   . . . } \{a_k,~a_{k-1},~...\} { ak, ak1, ...} a k + 1 a_{k+1} ak+1, 表示成一种矩阵关系。这样一来,若干次递归之后的结果相当于初始条件乘以一个矩阵的 K K K 次方。而差分方程最后的解是否 stable 取决于矩阵的特征值是否在复平面的单元圆中。

这一讲 Prof. Strang 着重讲矩阵和其特征值的在微分方程 (differential equations) 中的应用。

矩阵的指数函数 e A e^{\bm{A}} eA

学过高等数学都知道泰勒展开,比如
1 1 − x = 1 + x + x 2 + x 3 + . . . ,     ( if  ∣ x ∣ < 1 ) \frac{1}{1-x} = 1+x+x^2+x^3+...,~~~(\text{if}~|x|<1) 1x1=1+x+x2+x3+...,   (if x<1)

e x = 1 + x + 1 2 ! x 2 + 1 3 ! x 3 + . . . e^x = 1+x+\frac{1}{2!} x^2+\frac{1}{3!}x^3+... ex=1+x+2!1x2+3!1x3+...

同样的,矩阵也可以进行同样的操作

( I − A ) − 1 = 1 + A + A 2 + A 3 + . . . ,     ( if  A ∞ → 0 ) (\bm{I}-\bm{A})^{-1}=1+\bm{A}+\bm{A}^2+\bm{A}^3+...,~~~(\text{if}~\bm{A}^\infty\to 0) (IA)1=1+A+A2+A3+...,   (if A0)

e A = I + A + 1 2 ! A 2 + 1 3 ! A 3 + . . .        ( 1 ) e^\bm{A} = \bm{I}+\bm{A}+\frac{1}{2!} \bm{A}^2+\frac{1}{3!}\bm{A}^3+...~~~~~~(1) eA=I+A+2!1A2+3!1A3+...      (1)

这样就引出了矩阵的指数函数的定义。特别的,当 A \bm{A} A n n n 个线性无关的特征向量时,我们可以把 A \bm{A} A 相似对角化
A = S Λ S − 1 \bm{A=S\Lambda S^{-1}} A=SΛS1

e A = I + S Λ S − 1 + 1 2 ! S Λ 2 S − 1 + 1 3 ! S Λ 3 S − 1 + . . . = S e Λ S − 1      ( 2 ) e^\bm{A} = \bm{I}+\bm{S\Lambda S^{-1}}+\frac{1}{2!} \bm{S\Lambda^2 S^{-1}}+\frac{1}{3!}\bm{S\Lambda^3 S^{-1}}+...=\bm{Se^\Lambda S^{-1}}~~~~(2) eA=I+SΛS1+2!1SΛ2S1+3!1SΛ3S1+...=SeΛS1    (2)

看到没,只要 A \bm{A} A 可以对角化,我们便能把 e A e^\bm{A} eA 转换为 S e Λ S − 1 \bm{Se^\Lambda S^{-1}} SeΛS1. 这样做有什么好处尼?当然是 e Λ e^\Lambda eΛ 比较简单啦,请看
e Λ = I + Λ + 1 2 ! Λ 2 + 1 3 ! Λ 3 + . . . = [ e λ 1 0 0 ⋯ 0 e λ 2 0 ⋯ 0 0 e λ 3 ⋯ ⋮ ⋮ ⋮ ⋱ ]      ( 3 ) e^\Lambda=\bm{I}+\Lambda+\frac{1}{2!} \Lambda^2+\frac{1}{3!}\Lambda^3+... =\begin{bmatrix} e^{\lambda_1} & 0 & 0 & \cdots \\ 0 & e^{\lambda_2} & 0 & \cdots \\ 0 & 0 & e^{\lambda_3} & \cdots \\ \vdots & \vdots & \vdots & \ddots \\ \end{bmatrix}~~~~(3) eΛ=I+Λ+2!

  • 3
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值