MIT 线性代数 Linear Algebra 28: 对称矩阵与Jordan Form

在本节开始前,Prof. Strang 先回顾了一下positive definite matrix,有一些新内容

More about positive definiteness

  1. 如果 A \bm{A} A 正定,则 A − 1 \bm{A}^{-1} A1 正定。

这个结论直接看特征值就行, A − 1 \bm{A}^{-1} A1 的特征值是 A \bm{A} A 的倒数 (不记得的往前看, A \bm{A} A的特征多项式两边同乘 A − 1 \bm{A}^{-1} A1 即可得到),所以也全是正数。

  1. if A   B \bm{A~B} A B 都是正定的,那么 A + B A+B A+B 也是正定的。

根据正定的定义易得。

  1. 只要方阵 A \bm{A} A 满秩,    A ⊤ A ~~\bm{A}^\top\bm{A}   AA 是正定矩阵。

对称性显然满足, 再看 x ≠ 0 \bm{x}\neq 0 x=0 时的 x ⊤ A ⊤ A x = ( A x ) ⊤ A x = ∥ A x ∥ 2 \bm{x}^\top\bm{A}^\top\bm{A}\bm{x}=(\bm{Ax})^\top\bm{Ax}=\|\bm{Ax}\|^2 xAAx=(Ax)Ax=Ax2,因为 A \bm{A} A 满秩,所以 null space 只有全零向量,因此 ∥ A x ∥ 2 > 0 \|\bm{Ax}\|^2>0 Ax2>0, A ⊤ A \bm{A}^\top\bm{A} AA 正定. In general, 如果 A \bm{A} A 不是方阵,只要它列满秩也有同样结论。

对称矩阵

对称矩阵的意义在于它构建了a family of matrices。具体来说,我们称 B \bm{B} B A \bm{A} A 相似 if and only if

B = M − 1 A M \bm{B}=\bm{M}^{-1}\bm{AM} B=M1AM

注意,

  1. M − 1 \bm{M}^{-1} M1 M \bm{M} M 互为逆,所以谁在左边谁在右边无关紧要,这与 A ⊤ A \bm{A}^\top\bm{A} AA 不同。

  2. 所有相似的矩阵构成了一个family,其中可能会有对角阵,那说明这个family所有的矩阵都可以相似对角化。

  3. 所有相似的矩阵有同样的特征值.
    A x = λ x \bm{Ax}=\lambda \bm{x} Ax=λx

M B M − 1 x = λ x \bm{M}\bm{BM}^{-1}\bm{x}=\lambda \bm{x} MBM1x=λx

B ( M − 1 x ) = λ ( M − 1 x ) \bm{B}\bm{(M}^{-1}\bm{x})=\lambda (\bm{M}^{-1}\bm{x}) B(M1x)=λ(M1x)

从第三点来看,实际上相似对角化 A = S Λ S − 1 \bm{A}=\bm{S}\Lambda\bm{S}^{-1} A=SΛS1 保持了 A \bm{A} A 的特征值不变,而是把特征向量变得很nice,因为对角矩阵的特征向量就是 单位阵的各个column。

Jordan form

如果我们考虑理想的情况,设矩阵 A \bm{A} A, B \bm{B} B 有同样的 n n n 个各不相同的特征值 λ 1 \lambda_1 λ1, λ 2 \lambda_2 λ2, …, λ n \lambda_n λn, 那他们俩必定相似,而且任何特征值为 λ 1 \lambda_1 λ1, λ 2 \lambda_2 λ2, …, λ n \lambda_n λn的矩阵都与他们相似。

但是如果特征值有重复的,且线性相关特征向量的个数不足 n n n 个,那这个family里面会缺少对角阵,比如
A = [ 4 0 0 4 ]     B = [ 4 1 0 4 ] \bm{A}=\begin{bmatrix} 4 & 0 \\ 0 & 4 \\ \end{bmatrix}~~~\bm{B}=\begin{bmatrix} 4 & 1 \\ 0 & 4 \\ \end{bmatrix} A=[4004]   B=[4014]

除去 A \bm{A} A 之外所有特征值为 { 4 , 4 } \{4,4\} {4,4} 的矩阵都与 B \bm{B} B 相似,而 A \bm{A} A 只与自己相似因为 M − 1 A M = A \bm{M}^{-1}\bm{AM=A} M1AM=A . 此时,我们只能从包含 B \bm{B} B 的family中找到一个与 A \bm{A} A 最相似的,这也就是Jordan matrix。

Theorem: 任意方阵 A \bm{A} A 都与一个 Jordan matrix J \bm{J} J 相似。
J = [ J 1 0 ⋯ 0 0 J 2 ⋯ 0 ⋮ ⋮ ⋱ 0 0 0 0 J d ] \bm{J}=\begin{bmatrix} \bm{J_1} & 0 & \cdots & 0 \\ 0 & \bm{J_2} & \cdots & 0 \\ \vdots & \vdots & \ddots & 0\\ 0 & 0 & 0 & \bm{J_d}\\ \end{bmatrix} J=J1000J200000Jd

其中每一个 J i \bm{J_i} Ji 都是一个Jordan block。一个Jordan matrix 的例子如下所示
在这里插入图片描述
其中每一个Jordan block 对角线都是特征值,上方的次对角线全是1. 特别的,每一个Jordan block对应一个特征向量,因此,Jordan block的数量也就是矩阵线性无关特征值的数量。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值