用相量测量单元(PMU)估计电力系统状态的Matlab仿真方法研究,基于相量测量的电力系统状态估计方法与Matlab仿真

电力系统状态估计是根据在少数母线上进行的测量来估计电力系统中所有母线的状态(电压幅值和角度)的过程。
早期的测量设备只能提供测量数量的大小。
但现在,一种叫做相量测量单元(PMU)的高效测量设备正在使用,它可以测量母线的电压相量(大小和角度)以及直接连接线路的电流相量。
由于PMU非常昂贵,因此不能仅使用PMU测量来估计电力系统的状态。
因此,相量测量被用作传统测量的附加测量,以估计电力系统的状态。
在本本文中,解释了使用PMU测量来估计电力系统的状态,编写了Matlab程序,并在IEEE-14总线和IEEE-30总线系统上进行了仿真,以验证该方法。
该方法使用单独的线性状态估计器模型,该模型利用来自WLS的状态估计以及通过后处理的PMU电压和电流测量。
首先,该模型使用传统测量的WLS状态估计方法估计极坐标中的状态。
然后,该状态和PMU测量值(均以直角坐标表示)用于估计系统的最终状态。

ID:3988723985623292

啦啦啦啦啦啦啦


电力系统状态估计是根据在少数母线上进行的测量来估计电力系统中所有母线的状态(电压幅值和角度)的过程。在过去,测量设备只能提供测量数量的大小,而无法提供相量信息。然而,随着相量测量单元(PMU)的出现,电力系统状态估计得到了显著改进。

相量测量单元(PMU)是一种高效测量设备,可以测量母线的电压相量(大小和角度)以及直接连接线路的电流相量。PMU的出现使得电力系统状态估计更加准确和可靠。然而,由于PMU设备的昂贵性,不能只依靠PMU测量来估计电力系统的状态。

因此,相量测量被用作传统测量的附加测量,以估计电力系统的状态。本文将介绍使用PMU测量来估计电力系统状态的方法,并编写了Matlab程序进行仿真实验,验证该方法在IEEE-14总线和IEEE-30总线系统上的有效性。

该方法使用单独的线性状态估计器模型,该模型利用来自加权最小二乘(WLS)的传统测量值以及通过后处理的PMU电压和电流测量值。首先,基于传统测量的WLS状态估计方法,估计极坐标中的系统状态。然后,将传统测量值和PMU测量值(均以直角坐标表示)进行组合,得到系统的最终状态估计值。

通过对IEEE-14总线和IEEE-30总线系统进行仿真实验,我们验证了该方法的有效性。实验结果表明,使用PMU测量进行状态估计可以提高电力系统状态估计的准确性和可靠性。该方法不仅能够提供更准确的电力系统状态信息,还能够在故障检测和定位、电力系统调度和运行等方面发挥重要作用。

总之,本文介绍了使用PMU测量来估计电力系统状态的方法,并通过仿真实验验证了该方法的有效性。该方法能够提供准确的电力系统状态信息,为电力系统的运行和调度提供了重要的支持。未来,我们可以进一步研究如何进一步提高PMU测量的精确度和可靠性,以及如何将PMU技术应用于更复杂的电力系统中,以满足不断增长的需求和挑战。

【相关代码,程序地址】:http://fansik.cn/723985623292.html

### Simulink 中观测量的使用方法及示例 #### 一、Simulink中的观测器概述 在Simulink环境中,观测器用于估计系统的内部状态变量。对于电机控制系统而言,常见的观测对象包括电流、电压、位置以及速度等物理量。通过构建合适的观测模型并利用实际可测得输入输出数据来调整参数直至其能够较为精确地反映真实情况下的动态特性。 #### 二、基于滑模理论的永磁同步电机(SPM)观测结构介绍 针对SPM这类非线性强耦合多变量系统,采用传统卡尔曼滤波可能难以取得理想效果;而滑膜变结构控制由于具备良好鲁棒性和快速响应能力成为了一种有效解决方案之一[^2]。具体实现上会涉及到锁相环(PLL)或低通滤波(LPF),这些组件帮助从三相静止坐标系转换到两相同步旋转坐标系过程中获取更稳定的反馈信号——即电气角度θe及其变化率ωe (电角频率)。 #### 三、创建简单观测模块实例说明 下面给出一段MATLAB/Simulink代码片段作为基础框架指导: ```matlab % 初始化 simulink 模型 new_system('MyObserverModel'); add_block('simulink/Sources/Step','MyObserverModel/Input'); % 输入源设置为阶跃函数 add_block('simulink/Commonly Used Blocks/Gain','MyObserverModel/Kp'); % 增益Kp调节比例系数 set_param(gcb,'Gain','10') ; % 添加积分环节以形成PI控制器形式 add_block('simulink/Continuous/Integrator', 'MyObserverModel/integrator'); % 构建误差计算部分 add_line('MyObserverModel',[gco '/Y'],[gcbo '/In1'],'autorouting','on'); add_block('simulink/Math Operations/Subtract','MyObserverModel/ErrorCalculation'); % 将上述各部件连接起来构成完整的前馈补偿加负反馈闭环架构 connect_lines({'Input/Y','ErrorCalculation/In1'},'MyObserverModel/'); connect_lines({'integrator/Y','ErrorCalculation/In2'},'MyObserverModel/'); ``` 此段脚本仅展示了如何建立一个基本的比例积分(PI)类型的观测机制雏形,在此基础上还可以进一步引入更多复杂算法比如前述提到过的滑动模式观测器等内容进行扩展优化处理。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值