Large Scale Multi-view Stereopsis Evaluation
1.四个问题
要解决什么问题
优化多立体视图(MVS)评估标准
用什么方法解决
1.提出了一个针对MVS的新数据集:由80个不同场景组成,其中59个场景包含49个摄像机位置,21个场景包含64个摄像机位置,图像分辨率为1200*1600。(相机安装在6轴工业机器人上,每个位置使用结构光来获取表面点云。使用18个LED来控制照明)
2.寻求一种无偏见的评估方法:
a.通过计算一个可观性掩码处理缺失数据,并且只评估位于其中的立体重建点。
b.准确度和完整性评估。(准确度以MVS重建到结构光参考的距离来衡量,完整性以从参考到MVS重建的距离衡量。)
为了解决评估中的偏差,通过随机访问点删除位于0.2mm邻域中的附近点来抽取MVS点云,使得没有两个点比0.2mm更近。选择这个0.2mm采样阈值以匹配参考重建的估计分辨率。这个过程通过将点保持在较低密度区域来确保对整个重建的无偏估计,减少密集区域对整体重建精度的影响。
效果如何
效果不错,更全面了。
还存在什么问题
真实场景比较复杂,该数据集无法实现
论文简介:
摘要: Middlebury 和 Strecha 等人的开创性多视图立体基准评估。 在推动多视图立体视觉方法的发展方面发挥了重要作用。 尽管具有开创性,但这些基准数据集的范围有限,参考场景很少。 在这里,我们尝试通过提出一个新的多视图立体数据集来使这些工作更进一步,该数据集的场景数量大一个数量级,多样性显着增加。 具体来说,我们提出了一个包含 80 个变化很大的场景的数据集。 每个场景由 49 或 64 个精确的相机位置和参考结构光扫描组成,所有这些都由 6 轴工业机器人获取。 为了应用这个数据集,我们提出了对 Middlebury 评估的评估协议的扩展,反映了我们一些场景的更复杂的几何形状。 所提出的数据集用于评估 Tola 等人、Campbell 等人的最先进的多视图立体算法。 和古川等人。 因此,我们展示了数据集的可用性,并深入了解多视图立体视觉的工作原理和挑战。 通过这些实验,我们凭经验验证了多视图立体视觉的一些核心假设,并确定和重申了一些核心挑战。
实验结果: