yolov8的nms中multi-label功能为什么不是真正的multi-label(补充)

上文详解yolov8的nms中multi-label功能为什么不是真正的multi-label任务实现说到在yolov8的detection训练过程都是以每个像素最大面积真实目标框来作为loss的target来计算损失率和训练的,所以无法对重叠的多类别框进行训练,即使由nms产生的multi-label框,也不是真正的multi-label网络。

        训练过程中,决定是否同时训练两个标签的是标签分配策略TaskAlignedAssigner过程。标签分配最关键的一步是select_highest_overlaps函数,它将获得在每个像素点上面积最大的唯一GT,target_gt_idx。往后target_labels, target_bboxes, target_scores都由self.get_targets函数产生。
        那么在select_highest_overlaps函数中是什么决定或产生了最后的target_gt_idx呢?在代码中可以很明显看出:
        

def select_highest_overlaps(mask_pos, overlaps, n_max_boxes):
    # (b, n_max_boxes, h*w) -> (b, h*w)
    fg_mask = mask_pos.sum(-2)
    if fg_mask.max() > 1:  # one anchor is assigned to multiple gt_bboxes
        mask_multi_gts = (fg_mask.unsqueeze(1) > 1).repeat([1, n_max_boxes, 1])  # (b, n_max_boxes, h*w)
        max_overlaps_idx = overlaps.argmax(1)  # (b, h*w)
        is_max_overlaps = F.one_hot(max_overlaps_idx, n_max_boxes)  # (b, h*w, n_max_boxes)
        is_max_overlaps = is_max_overlaps.permute(0, 2, 1).to(overlaps.dtype)  # (b, n_max_boxes, h*w)
        mask_pos = torch.where(mask_multi_gts, is_max_overlaps, mask_pos)  # (b, n_max_boxes, h*w)
        fg_mask = mask_pos.sum(-2)
    # find each grid serve which gt(index)
    target_gt_idx = mask_pos.argmax(-2)  # (b, h*w)
    return target_gt_idx, fg_mask, mask_pos

        由上面select_highest_overlaps函数代码可知,起决定作用是mask_pos、overlaps,那我们找到源码中传入参数的部分:

        mask_pos、overlaps是由self.get_pos_mask处理得来。来看下该函数源码:

    def get_pos_mask(self, pd_scores, pd_bboxes, gt_labels, gt_bboxes, anc_points, mask_gt):
        """Get in_gts mask, (b, max_num_obj, h*w)."""
        mask_in_gts = select_candidates_in_gts(anc_points, gt_bboxes)
        # Get anchor_align metric, (b, max_num_obj, h*w)
        align_metric, overlaps = self.get_box_metrics(pd_scores, pd_bboxes, gt_labels, gt_bboxes, mask_in_gts * mask_gt)
        # Get topk_metric mask, (b, max_num_obj, h*w)
        mask_topk = self.select_topk_candidates(align_metric, topk_mask=mask_gt.expand(-1, -1, self.topk).bool())
        # Merge all mask to a final mask, (b, max_num_obj, h*w)
        mask_pos = mask_topk * mask_in_gts * mask_gt

        return mask_pos, align_metric, overlaps

        overlaps来源于self.get_box_metrics函数:

    def get_box_metrics(self, pd_scores, pd_bboxes, gt_labels, gt_bboxes, mask_gt):
        """Compute alignment metric given predicted and ground truth bounding boxes."""
        na = pd_bboxes.shape[-2]
        mask_gt = mask_gt.bool()  # b, max_num_obj, h*w
        overlaps = torch.zeros([self.bs, self.n_max_boxes, na], dtype=pd_bboxes.dtype, device=pd_bboxes.device)
        bbox_scores = torch.zeros([self.bs, self.n_max_boxes, na], dtype=pd_scores.dtype, device=pd_scores.device)

        ind = torch.zeros([2, self.bs, self.n_max_boxes], dtype=torch.long)  # 2, b, max_num_obj
        ind[0] = torch.arange(end=self.bs).view(-1, 1).expand(-1, self.n_max_boxes)  # b, max_num_obj
        ind[1] = gt_labels.squeeze(-1)  # b, max_num_obj
        # Get the scores of each grid for each gt cls
        bbox_scores[mask_gt] = pd_scores[ind[0], :, ind[1]][mask_gt]  # b, max_num_obj, h*w

        # (b, max_num_obj, 1, 4), (b, 1, h*w, 4)
        pd_boxes = pd_bboxes.unsqueeze(1).expand(-1, self.n_max_boxes, -1, -1)[mask_gt]
        gt_boxes = gt_bboxes.unsqueeze(2).expand(-1, -1, na, -1)[mask_gt]
        overlaps[mask_gt] = bbox_iou(gt_boxes, pd_boxes, xywh=False, CIoU=True).squeeze(-1).clamp_(0)

        align_metric = bbox_scores.pow(self.alpha) * overlaps.pow(self.beta)
        return align_metric, overlaps

        其中可以看到overlaps经过torch.zeros生成初始0值后,经过bbox_iou函数进行计算处理获得,其中bbox_iou就是大家熟悉的iou计算函数,一般用于损失函数计算

def bbox_iou(box1, box2, xywh=True, GIoU=False, DIoU=False, CIoU=False, eps=1e-7):
    """
    Calculate Intersection over Union (IoU) of box1(1, 4) to box2(n, 4).

    Args:
        box1 (torch.Tensor): A tensor representing a single bounding box with shape (1, 4).
        box2 (torch.Tensor): A tensor representing n bounding boxes with shape (n, 4).
        xywh (bool, optional): If True, input boxes are in (x, y, w, h) format. If False, input boxes are in
                               (x1, y1, x2, y2) format. Defaults to True.
        GIoU (bool, optional): If True, calculate Generalized IoU. Defaults to False.
        DIoU (bool, optional): If True, calculate Distance IoU. Defaults to False.
        CIoU (bool, optional): If True, calculate Complete IoU. Defaults to False.
        eps (float, optional): A small value to avoid division by zero. Defaults to 1e-7.

    Returns:
        (torch.Tensor): IoU, GIoU, DIoU, or CIoU values depending on the specified flags.
    """

    # Get the coordinates of bounding boxes
    if xywh:  # transform from xywh to xyxy
        (x1, y1, w1, h1), (x2, y2, w2, h2) = box1.chunk(4, -1), box2.chunk(4, -1)
        w1_, h1_, w2_, h2_ = w1 / 2, h1 / 2, w2 / 2, h2 / 2
        b1_x1, b1_x2, b1_y1, b1_y2 = x1 - w1_, x1 + w1_, y1 - h1_, y1 + h1_
        b2_x1, b2_x2, b2_y1, b2_y2 = x2 - w2_, x2 + w2_, y2 - h2_, y2 + h2_
    else:  # x1, y1, x2, y2 = box1
        b1_x1, b1_y1, b1_x2, b1_y2 = box1.chunk(4, -1)
        b2_x1, b2_y1, b2_x2, b2_y2 = box2.chunk(4, -1)
        w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + eps
        w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + eps

    # Intersection area
    inter = (b1_x2.minimum(b2_x2) - b1_x1.maximum(b2_x1)).clamp_(0) * \
            (b1_y2.minimum(b2_y2) - b1_y1.maximum(b2_y1)).clamp_(0)

    # Union Area
    union = w1 * h1 + w2 * h2 - inter + eps

    # IoU
    iou = inter / union
    if CIoU or DIoU or GIoU:
        cw = b1_x2.maximum(b2_x2) - b1_x1.minimum(b2_x1)  # convex (smallest enclosing box) width
        ch = b1_y2.maximum(b2_y2) - b1_y1.minimum(b2_y1)  # convex height
        if CIoU or DIoU:  # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1
            c2 = cw ** 2 + ch ** 2 + eps  # convex diagonal squared
            rho2 = ((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2 + (b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4  # center dist ** 2
            if CIoU:  # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47
                v = (4 / math.pi ** 2) * (torch.atan(w2 / h2) - torch.atan(w1 / h1)).pow(2)
                with torch.no_grad():
                    alpha = v / (v - iou + (1 + eps))
                return iou - (rho2 / c2 + v * alpha)  # CIoU
            return iou - rho2 / c2  # DIoU
        c_area = cw * ch + eps  # convex area
        return iou - (c_area - union) / c_area  # GIoU https://arxiv.org/pdf/1902.09630.pdf
    return iou  # IoU

        到这里大家就可以明白,当图像一个像素在有多个标签的时候,训练的时候会怎么训练了。就是在前向传播时,每次的预测框与真实框进行iou计算,获得每次预测框与真实框的交并比overlaps,进行输出。根据交并比大小,其实就是iou大小选择iou最大作为真实值target,然后和预测值pred进行损失计算。
        那么前文也有一点讲错了,就是并不是以每个像素最大面积真实目标框来作为loss的target来计算损失率和训练的,而是每次训练的预测框和真实框重叠率最高的进行训练。
        这就比较复杂了,也就是训练开始时“随机”对多个标签的一个进行拟合,然后下一次也是“随机”对其中一个拟合,其过程如果样本够大或者训练够多,也是能够对两个标签框进行同时拟合的。但是可以确定的是,这种拟合肯定是每次只能偏向一个标签,所以还是不是multi-label的最优方法,个人觉得要达到较好的效果还是要每次都单独对两个标签都拟合,才能使得模型更精准!!!!

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值