YOLOV8改进:soft-nms、DIOU-nms、SIOU-nms、EIOU-nms、WIOU-nms

本文介绍了NMS在目标检测中的作用和原理,然后详细阐述了Soft-NMS如何通过引入衰减函数改进传统NMS,以更平滑地抑制冗余边界框,提高检测准确性。最后,展示了在YOLOV8中如何添加和使用Soft-NMS,并探讨了与其他IoU损失函数的结合应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.nms介绍

1.1 nms

NMS(Non-Maximum Suppression,非极大值抑制)是一种常用的目标检测算法,用于抑制冗余的边界框,保留最具代表性的目标框。

在目标检测任务中,通常会生成多个候选边界框(bounding box),每个边界框都对应着一个可能的目标。然而,由于图像中可能存在多个重叠的边界框,为了提取出最准确的目标框,需要使用NMS来进行筛选。

NMS的基本原理如下:

  1. 首先,根据目标框的置信度(或者其他评分指标),按照降序排列所有的候选框。
  2. 选择具有最高置信度的框,并将其添加到最终输出的结果列表中。
  3. 对于剩余的候选框,计算它们与已选框之间的重叠区域的面积(例如,使用交并比IoU)。
  4. 如果某个候选框与已选框的重叠面积大于设定的阈值(通常为0.5),则将该候选框舍弃;否则,将其添加到最终输出的结果列表中。
  5. 重复步骤3和步骤4,直到处理完所有的候选框。
  6. 得到最终的输出结果列表,其中包含经过非极大值抑制筛选后的目标框。

通过使用NMS,能够有效地减少冗余的目标框,只保留最具代表性的目标框,提高目标检测的准

<think>好的,我现在需要解释YOLOv8中非极大值抑制(NMS)的工作原理。首先,我得回忆一下NMS的基本概念和作用。NMS在目标检测中用于消除重叠的边界框,保留最可能的检测结果。YOLOv8作为最新的YOLO版本,可能对NMS的实现有一些优化,但核心原理应该相似。 用户可能已经知道目标检测的基本流程,但需要具体了解NMSYOLOv8中的运作方式。我应该分步骤解释,从生成预测框开始,到计算置信度,排序,然后处理重叠框的过程。 需要确定YOLOv8使用的NMS是传统方法还是改进版本,比如Soft-NMS或其他变体。但根据常见信息,YOLOv8可能仍使用传统的NMS,但需要确认。假设是传统方法,那么步骤包括:置信度排序,计算IoU,抑制重叠度高的框。 要提到IoU阈值,这个参数的作用,以及置信度阈值的影响。可能YOLOv8有默认的参数值,但用户可能想知道具体数值或如何调整。 另外,YOLOv8可能在处理速度上做了优化,比如并行计算或其他技巧,但不确定是否需要深入。可能需要保持解释的通用性,同时指出YOLOv8可能的优化点。 需要结构化回答,先概述NMS的作用,再详细步骤,最后总结其在YOLOv8中的重要性。确保语言清晰,避免技术术语过多,但必要的术语如IoU需要解释。 还要检查是否有最新的YOLOv8文档或论文提到NMS的具体实现,但目前假设与之前版本类似。可能存在的步骤包括: 1. 生成预测框和类别置信度。 2. 根据置信度分数排序所有预测框。 3. 选择最高置信度的框,抑制与其IoU超过阈值的其他框。 4. 重复这个过程直到处理完所有框。 需要强调每个步骤的目的,比如排序是为了优先保留更可信的检测结果,IoU阈值控制重叠的容忍度。最后,可以提到NMSYOLOv8中的效果,比如减少误检,提高检测精度。 可能还需要对比其他版本的YOLONMS的应用,但用户问题集中在YOLOv8,所以保持焦点。如果有YOLOv8特有的调整,如不同的IoU计算方式(如DIoU、CIoU),但NMS部分可能还是基于传统IoU。 最后,检查是否有错误,比如步骤是否正确,术语是否准确,确保逻辑连贯。</think>在YOLOv8中,**非极大值抑制(Non-Maximum Suppression, NMS)** 是后处理的核心步骤,用于消除冗余的检测框,保留最合理的预测结果。其工作原理可分为以下步骤: --- ### **1. 生成预测框** YOLOv8会为每个网格生成多个候选框(Anchor Boxes),并预测: - **边界框坐标**(中心点、宽高) - **置信度分数**(反映框内存在目标且预测准确的程度) - **类别概率**(目标属于各个类别的概率) --- ### **2. 初步筛选** - **置信度阈值过滤**:丢弃置信度低于预设阈值(如 `conf_thres=0.25`)的预测框,减少计算量。 --- ### **3. NMS核心流程** 1. **按置信度排序** 将剩余的预测框按**置信度从高到低**排序。 2. **迭代选择最优框** - 选择当前列表中**置信度最高**的框,加入最终结果集。 - 计算该框与剩余所有框的**交并比(IoU)**。 - 若某框与当前框的IoU超过预设阈值(如 `iou_thres=0.7`),则视为重复检测,直接丢弃。 3. **重复迭代** 在剩余的框中重复步骤2,直到所有框被处理完毕。 --- ### **4. 关键参数** - **IoU阈值(iou_thres)**:控制框的重叠容忍度,值越小,NMS越严格。 - **置信度阈值(conf_thres)**:初步过滤低质量预测框。 --- ### **YOLOv8的优化** YOLOv8可能采用以下改进提升NMS效率: - **并行计算**:利用GPU加速IoU计算。 - **多类别NMS**:对每个类别独立执行NMS,避免跨类别抑制。 - **加权融合**(可选):对重叠框的坐标进行加权平均,提升定位精度。 --- ### **示例** 假设检测到3个重叠的边界框,置信度分别为0.9、0.8、0.7: 1. 保留0.9的框,计算其与0.8和0.7框的IoU。 2. 若IoU超过阈值(如0.7),则抑制0.8和0.7的框;否则保留。 --- ### **作用** - 消除同一目标的重复检测。 - 提高检测结果的精度和可视化效果。 通过NMSYOLOv8能够在复杂场景中输出简洁、准确的检测结果。
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

陈子迩

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值