YOLOV8改进:soft-nms、DIOU-nms、SIOU-nms、EIOU-nms、WIOU-nms

本文介绍了NMS在目标检测中的作用和原理,然后详细阐述了Soft-NMS如何通过引入衰减函数改进传统NMS,以更平滑地抑制冗余边界框,提高检测准确性。最后,展示了在YOLOV8中如何添加和使用Soft-NMS,并探讨了与其他IoU损失函数的结合应用。
摘要由CSDN通过智能技术生成

1.nms介绍

1.1 nms

NMS(Non-Maximum Suppression,非极大值抑制)是一种常用的目标检测算法,用于抑制冗余的边界框,保留最具代表性的目标框。

在目标检测任务中,通常会生成多个候选边界框(bounding box),每个边界框都对应着一个可能的目标。然而,由于图像中可能存在多个重叠的边界框,为了提取出最准确的目标框,需要使用NMS来进行筛选。

NMS的基本原理如下:

  1. 首先,根据目标框的置信度(或者其他评分指标),按照降序排列所有的候选框。
  2. 选择具有最高置信度的框,并将其添加到最终输出的结果列表中。
  3. 对于剩余的候选框,计算它们与已选框之间的重叠区域的面积(例如,使用交并比IoU)。
  4. 如果某个候选框与已选框的重叠面积大于设定的阈值(通常为0.5),则将该候选框舍弃;否则,将其添加到最终输出的结果列表中。
  5. 重复步骤3和步骤4,直到处理完所有的候选框。
  6. 得到最终的输出结果列表,其中包含经过非极大值抑制筛选后的目标框。

通过使用NMS,能够有效地减少冗余的目标框,只保留最具代表性的目标框,提高目标检测的准

评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

陈子迩

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值