【强化学习】基于强化学习为robocup足球队训练最佳位置附matlab代码

 ✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知,求助可私信。

🔥 内容介绍

RoboCup机器人足球比赛对人工智能和机器人技术的综合能力提出了极高的要求。其中,球员的最佳位置选择是影响球队整体战术表现的关键因素之一。传统的基于规则或专家经验的方法难以应对复杂的动态环境,而强化学习 (Reinforcement Learning, RL) 技术凭借其强大的适应性和学习能力,为解决这一问题提供了新的途径。本文将深入探讨如何利用强化学习技术为RoboCup足球队训练最佳位置,并分析其优势与挑战。

一、问题定义与模型构建

RoboCup足球比赛中,球员的最佳位置并非静态的,而是随比赛进程、对手位置、队友位置等因素动态变化的。因此,我们需要构建一个能够学习并适应复杂动态环境的强化学习模型。该模型的目标是学习一个策略,该策略能够指导每位球员根据当前比赛状态选择最佳位置,最终最大化球队的胜率或得分。

我们可以将问题定义为一个多智能体强化学习 (Multi-Agent Reinforcement Learning, MARL) 问题。每个球员作为一个智能体,其状态空间包含自身位置、速度、朝向,以及队友和对手的位置、速度等信息。动作空间则包含球员的移动方向和速度。奖励函数的设计至关重要,它应该能够有效地引导智能体学习到最佳的策略。一个可能的奖励函数设计可以考虑以下因素:

  • 控球率: 球队控球时间越长,奖励越高。

  • 射门次数和进球数: 射门次数和进球数越多,奖励越高。

  • 距离球门距离: 距离球门越近,奖励越高 (需要考虑控球情况)。

  • 对手距离: 与对手保持一定距离,避免被抢断,可以获得正向奖励。

  • 队友协作: 与队友保持合理的距离和配合,可以获得正向奖励。

  • 避免犯规: 避免犯规行为,避免受到惩罚。

为了避免维度灾难,我们可以考虑使用一些状态空间降维技术,例如特征提取和神经网络表示。同时,选择合适的强化学习算法也至关重要。常用的算法包括Q-learning、SARSA、Deep Q-Network (DQN)及其变种,以及Actor-Critic方法等。考虑到RoboCup足球比赛的复杂性和实时性要求,基于神经网络的深度强化学习算法更具优势。

二、算法选择与训练策略

DQN及其改进算法,例如Double DQN、Dueling DQN和Prioritized Experience Replay,在处理高维状态空间和动作空间方面表现出色,因此是值得考虑的算法选择。 这些算法能够有效地学习复杂策略,并提高训练效率。 此外,考虑到多智能体的协作问题,可以采用一些MARL算法,例如MADDPG (Multi-Agent Deep Deterministic Policy Gradient) 或基于集中式训练、分散式执行 (Centralized Training, Decentralized Execution, CTDE) 的方法。

训练策略方面,需要采用合适的探索-利用策略,平衡探索新的策略和利用已学习的策略。Epsilon-greedy策略是一种常用的探索-利用策略,但它可能效率低下。 更高级的策略,例如基于Thompson Sampling的策略,可以提高训练效率。

模拟环境的构建对于强化学习的训练至关重要。一个逼真的模拟环境能够提供足够的训练数据,并加速学习过程。该模拟环境需要包含RoboCup足球比赛的规则和物理特性,例如球员的移动速度、射门精度等。

三、挑战与未来展望

尽管强化学习为RoboCup足球队最佳位置训练提供了强大的工具,但仍然存在一些挑战:

  • 可解释性: 深度强化学习模型通常是一个“黑盒”,难以理解其学习到的策略。这使得对策略的分析和改进变得困难。 未来的研究需要关注强化学习模型的可解释性问题。

  • 样本效率: 深度强化学习算法通常需要大量的训练数据才能达到良好的性能。提高样本效率是未来研究的一个重要方向。

  • 实时性: 在实际比赛中,强化学习模型需要能够实时地做出决策。 这需要对算法进行优化,以提高其计算速度。

  • 鲁棒性: 强化学习模型需要能够应对各种干扰和意外情况,例如对手的策略变化和场地条件的变化。提高模型的鲁棒性也是一个重要的研究方向。

未来的研究可以关注以下方面:

  • 探索更先进的强化学习算法,例如基于迁移学习或元学习的算法。

  • 开发更有效的奖励函数设计方法,更好地引导智能体学习。

  • 研究如何提高强化学习模型的可解释性和鲁棒性。

  • 将强化学习与其他人工智能技术结合,例如预测模型和规划算法。

总而言之,强化学习为解决RoboCup足球队最佳位置选择问题提供了一种有效的方法。 通过合理的模型构建、算法选择和训练策略,可以训练出具有良好性能的策略。 然而,仍然存在一些挑战需要进一步研究,以推动该领域的发展,最终实现RoboCup足球队的更高水平竞技。

📣 部分代码

all_gain          = [   5      5        0         5        0 ];

pff_weights.shotpath_range     = [   0      10       0         9        0 ];

pff_weights.shotpath_offset    = [   0      0.1      0         2        0 ];

pff_weights.shotpath_gain      = [   0      20       0         5        0 ];

pff_weights.shotpathDef_range  = [   10     0        9         0        9 ];

pff_weights.shotpathDef_offset = [   0.01   0        0.01      0        0.5];

pff_weights.shotpathDef_gain   = [   4      0        2         0        3 ];

pff_weights.goalAtt_range      = [   0      0        0         3        0 ];

pff_weights.goalAtt_offset     = [   0      0        0         2        0 ];

pff_weights.goalAtt_gain       = [   0      0        0         1        0 ];

pff_weights.goalDef_range      = [   9      0        10        0        9 ];

pff_weights.goalDef_offset     = [   0.5    0        1.5       0        2.5 ];

pff_weights.goalDef_gain       = [   4      0        3         0        2 ];

pff_weights.Bball_range        = [   0      9        9         2        9 ];

pff_weights.Bball_offset       = [   0      0        0         0        0 ];

pff_weights.Bball_gain         = [   0      50       9         1        9 ];

%repulsive

pff_weights.sideline_range     = [   0.1    0.2      0.2       0.2      0.2];

pff_weights.sideline_offset    = [   0      0        0         0        0];

pff_weights.sideline_gain      = [   1      1        1         1        1 ];

pff_weights.teammate_range     = [   0      0.5      1         1        1 ];

pff_weights.teammate_offset    = [   0      0        0         0        0 ];

pff_weights.teammate_gain      = [   0      0.5      0.5       0.5      0.5];

%more pff parameters

cfg.pff_fun_desc = [1 1 1 1 1 1 0 0];

cfg.pff_testing = false;

cfg.num_local_samples = 10;

cfg.local_sample_distance = 0.1;

cfg.pff_vel_scale = 10;

cfg.pff_weights = cell2mat(struct2cell(pff_weights));

    

%Game Scoring

cfg.goalsForPts = 100;

cfg.goalsAgainstPts = -100;

cfg.oobPts = -10;

cfg.close2ballthresh = 0.5; %m

cfg.close2ballPts = 0;

cfg.ownGoalForPts = -50;

cfg.ownGoalAgainstPts = -100;

cfg.kickPts = 0;

%Nelder mead learning parameters and calculations

cfg.NM_fn_thresh = 150;

cfg.NM_domain_thresh = 0.01;

cfg.NM_weight_penalty = 0;

cfg.NM_initial_step_size = 0.05;

cfg.NM_saveAfter = 100;

cfg.NM_batchSize = 4;

cfg.NM_maxIter = 2000;

cfg.validation_batchSize = 50;

%override initial weights if desired

if ~isempty(cfg.load_fname)

    load(cfg.load_fname)

    cfg.pff_weights = new_weights;

end

%remove all 0 weights from training set but keep index for easy replacement

%later

cfg.training_role = cfg.training_role+1;

cfg.NM_initial = reshape(cfg.pff_weights(:,cfg.training_role),1,[]);

cfg.NM_idx = [];

for i = cfg.training_role

    col = cfg.pff_weights(:,i);

    rows = find(col ~= 0);

    cols = repmat(i,length(rows),1);

    cfg.NM_idx = [cfg.NM_idx; sub2ind(size(cfg.pff_weights),rows,cols)];

end    

cfg.NM_initial(cfg.NM_initial == 0) = []; 

cfg.NM_dim = length(cfg.NM_initial);

%adaptive parameters for NM

%http://www.webpages.uidaho.edu/~fuchang/res/anms.pdf

cfg.NM_alpha = 1;

cfg.NM_beta = 1 + 2/cfg.NM_dim;

cfg.NM_gamma = 0.75-1/(2*cfg.NM_dim);

cfg.NM_delta = 1-1/cfg.NM_dim;

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除

👇 关注我领取海量matlab电子书和数学建模资料

🎁  私信完整代码和数据获取及论文数模仿真定制

🌿 往期回顾可以关注主页,点击搜索

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值