✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知,求助可私信。
🔥 内容介绍
股票价格预测是一项极具挑战性的任务,其复杂性在于股票市场的高度动态性、非线性以及噪声干扰。传统的预测模型往往难以捕捉股票价格波动中的复杂模式。本文提出了一种基于ELM-Adaboost极限学习机结合Adaboost集成学习的时间序列预测方法,旨在提高股票价格预测的准确性和鲁棒性。该方法首先利用ELM(极限学习机)的快速学习能力和非线性映射能力进行初步预测,然后通过Adaboost集成学习算法对多个弱预测器进行加权组合,形成强预测器。实验结果表明,与传统的时间序列预测方法相比,所提出的方法在股票价格预测任务中具有更高的精度和稳定性,验证了其有效性和应用潜力。
关键词: 极限学习机 (ELM),Adaboost,集成学习,时间序列预测,股票价格预测
引言
时间序列预测在金融、经济、气象等领域有着广泛的应用。其中,股票价格预测由于其高回报性和高风险性,一直是学术界和工业界的研究热点。然而,股票市场的复杂性和非线性特征使得精确预测股票价格成为一项极具挑战性的任务。传统的统计模型如ARIMA、GARCH等虽然在一定程度上能够捕捉股票价格的时间序列特性,但其线性假设限制了其对非线性模式的拟合能力。近年来,机器学习方法,尤其是深度学习方法,在时间序列预测领域取得了显著进展。然而,深度学习模型通常需要大量的训练数据和计算资源,并且存在参数调整复杂和容易过拟合的问题。
极限学习机(Extreme Learning Machine, ELM) 作为一种单隐层前馈神经网络,因其训练速度快、泛化能力强而被广泛应用于各种机器学习任务。ELM的随机初始化输入权重和偏置,使得其无需迭代调整参数,大大缩短了训练时间。然而,ELM的单模型预测能力可能不足以应对股票价格的复杂性。集成学习作为一种有效的提升模型性能的方法,通过组合多个弱学习器来构建强学习器,能够提高模型的准确性和鲁棒性。Adaboost算法是一种经典的集成学习算法,它通过自适应地调整弱学习器的权重来提升整体模型的预测性能。
基于以上背景,本文提出了一种基于ELM-Adaboost极限学习机结合Adaboost集成学习的时间序列预测方法。该方法首先利用ELM作为弱预测器,然后使用Adaboost算法对多个ELM模型进行集成,从而构建一个更强大的预测模型。本文将详细介绍该方法的原理、实现步骤,并通过实验验证其在股票价格预测任务中的有效性。
相关工作
时间序列预测领域的研究工作主要集中在以下几个方面:
-
传统统计模型: 包括自回归(AR)、移动平均(MA)、自回归移动平均(ARMA) 以及自回归积分移动平均(ARIMA)模型。这些模型基于线性假设,对于具有非线性特征的时间序列,预测效果有限。
-
基于机器学习的模型: 包括支持向量机(SVM)、人工神经网络(ANN) 以及近年来兴起的深度学习模型,如循环神经网络(RNN)及其变体长短期记忆网络(LSTM)和门控循环单元(GRU)。这些模型在非线性时间序列预测方面表现出较好的性能,但通常需要大量的训练数据和计算资源。
-
集成学习方法: 包括Bagging、Boosting、随机森林等。这些方法通过组合多个弱学习器来提高模型的预测性能。Adaboost作为Boosting算法的一种,通过自适应地调整弱学习器的权重,在分类和回归任务中都表现出优异的性能。
-
基于ELM的模型: ELM因其快速学习能力和良好的泛化性能,被广泛应用于时间序列预测。一些研究者将ELM与其他机器学习方法结合,如与遗传算法、粒子群优化算法等,来提高其预测精度。
本文提出的ELM-Adaboost集成学习方法,旨在结合ELM的快速学习能力和Adaboost的集成优势,提高股票价格预测的准确性和稳定性。
ELM-Adaboost集成学习方法
本节将详细介绍ELM-Adaboost集成学习方法的原理和步骤:
1. 极限学习机 (ELM)
极限学习机(Extreme Learning Machine, ELM) 是一种单隐层前馈神经网络,其网络结构包括输入层、单隐层和输出层。与传统的反向传播神经网络不同,ELM 的输入权重和隐层偏置是随机初始化的,且在训练过程中无需调整,只需要计算输出权重。ELM 的主要步骤如下:
-
随机初始化: 随机生成输入权重 W 和隐层偏置 b。
-
隐层输出计算: 根据输入 X,计算隐层节点的输出 H:
ini
H = g(W*X + b)
其中,g(.) 为激活函数,常见的有sigmoid函数、tanh函数等。
-
输出权重计算: 通过求解线性方程组 Hβ = Y 来获得输出权重 β,其中 Y 为目标值。通常使用Moore-Penrose伪逆来求解:
β = H⁺Y
其中,H⁺ 为H的伪逆。
ELM 的优点在于其训练速度快,计算效率高,且具有良好的泛化能力。
2. Adaboost 集成学习
Adaboost (Adaptive Boosting) 是一种迭代的集成学习算法,其基本思想是训练多个弱学习器,并通过加权组合的方式构建强学习器。Adaboost 的主要步骤如下:
-
初始化权重: 对训练样本的权重进行初始化,通常为均匀分布。
-
迭代训练: 迭代进行以下步骤:
-
训练弱学习器: 利用加权后的训练样本,训练一个弱学习器 (例如,ELM)。
-
计算误差率: 计算弱学习器在训练集上的误差率。
-
计算弱学习器权重: 根据误差率计算当前弱学习器的权重。
-
更新样本权重: 根据弱学习器的性能,更新训练样本的权重,增加错分样本的权重,降低正确分类样本的权重。
-
-
组合弱学习器: 将所有弱学习器进行加权组合,形成最终的强学习器。
3. ELM-Adaboost 集成学习时间序列预测
将 ELM 和 Adaboost 算法结合进行时间序列预测的具体步骤如下:
-
数据预处理: 对股票价格时间序列数据进行预处理,如归一化、差分等。
-
数据分割: 将处理后的时间序列数据分割为训练集和测试集。
-
弱学习器训练:
-
使用训练集,随机初始化多个 ELM 模型。
-
将每个 ELM 模型作为 Adaboost 的弱学习器。
-
-
Adaboost 集成:
-
使用 Adaboost 算法对多个 ELM 弱学习器进行集成训练。
-
在每一轮迭代中,根据每个 ELM 模型的预测误差,更新 ELM 模型的权重以及训练样本的权重。
-
-
预测: 将测试集输入到训练好的 ELM-Adaboost 模型中,得到最终的预测结果。
-
结果评估: 对预测结果进行评估,计算预测误差指标,如均方误差 (MSE)、均方根误差 (RMSE)、平均绝对误差 (MAE) 等。
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🎁 私信完整代码和数据获取及论文数模仿真定制
🌿 往期回顾可以关注主页,点击搜索
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇