【车间调度】基于蝗虫优化算法GOA求解零等待流水车间调度问题NWFSP附Matlab代码

✅作者简介:热爱数据处理、建模、算法设计的Matlab仿真开发者。

🍎更多Matlab代码及仿真咨询内容点击 🔗:Matlab科研工作室

🍊个人信条:格物致知。

🔥 内容介绍

零等待流水车间调度问题(No-Wait Flowshop Scheduling Problem, NWFSP)是生产调度领域的一个经典难题,具有很高的实际应用价值和理论研究意义。本文针对NWFSP的复杂性和求解难度,提出了一种基于蝗虫优化算法(Grasshopper Optimization Algorithm, GOA)的求解策略。首先,详细阐述了NWFSP的定义、特点和挑战,并回顾了已有的求解方法。其次,深入介绍了GOA的基本原理、算法流程和参数设置,并针对NWFSP的特点,设计了基于GOA的解编码、初始化、适应度函数以及搜索策略。最后,通过数值实验对提出的GOA算法进行了性能评估,并将结果与其他经典算法进行比较,验证了所提出的GOA算法在求解NWFSP时的有效性和优越性。实验结果表明,GOA算法在求解NWFSP时能够获得较好的调度方案,具有较强的全局搜索能力和收敛速度,为解决实际生产调度问题提供了一种新的有效途径。

关键词: 零等待流水车间调度问题;蝗虫优化算法;生产调度;全局优化;元启发式算法

1. 引言

生产调度是制造业生产管理的核心环节,其目标是在满足各种约束条件的前提下,合理安排生产资源,提高生产效率,降低生产成本。流水车间调度问题(Flowshop Scheduling Problem, FSP)作为生产调度中的典型问题之一,一直是研究的热点。在经典的FSP中,通常假设工件在不同机器上加工时,在机器之间允许有等待时间。然而,在某些特定的生产环境下,工件一旦在某台机器上加工完成,必须立即转移到下一台机器,不允许任何等待时间,这种约束条件下的FSP被称为零等待流水车间调度问题(NWFSP)。

NWFSP在实际生产中广泛存在,如在钢铁、化工、食品等行业中,由于工件自身的物理或化学性质限制,如高温、易腐、化学反应等,都要求工件在连续的机器间进行加工,不能有等待时间。因此,NWFSP的求解方法具有很强的实际应用价值。

NWFSP的求解是一个NP-hard问题,其复杂性随着工件数量和机器数量的增加呈指数级增长。传统的精确算法在求解较大规模NWFSP时效率低下,难以满足实际生产需求。因此,研究高效的启发式和元启发式算法,成为求解NWFSP的主要方向。

近年来,随着智能计算技术的快速发展,元启发式算法在解决复杂优化问题方面展现出强大的能力。蝗虫优化算法(Grasshopper Optimization Algorithm, GOA)作为一种新兴的元启发式算法,模拟了蝗虫的觅食行为,具有全局搜索能力强、参数少、易于实现等优点。本文将基于GOA算法,研究NWFSP的求解方法,旨在探索一种高效、可靠的优化策略。

2. 零等待流水车间调度问题(NWFSP)描述

2.1 NWFSP 定义

NWFSP 可以描述为:有n个工件需要在m台机器上按相同的顺序加工。每个工件必须首先在第一台机器上加工,然后依次在第二台、第三台机器上加工,直到在最后一台机器上加工完成。此外,NWFSP 还有一个关键约束条件:每个工件一旦在某台机器上加工完成,必须立即转移到下一台机器进行加工,不允许在机器之间等待。调度目标通常是最小化完工时间(makespan),即所有工件完成加工所需的最短时间。

2.2 NWFSP 的特点与挑战

NWFSP 的特点在于其严格的零等待约束。这种约束导致了以下几个挑战:

  • 组合优化性质: NWFSP 本质上是一个组合优化问题,需要在所有可能的工件加工顺序中寻找最优解。

  • 搜索空间巨大: 随着工件数量和机器数量的增加,搜索空间的规模呈指数级增长,使得求解难度显著增加。

  • 局部最优陷阱: 传统的局部搜索算法容易陷入局部最优解,难以找到全局最优解。

  • 解的复杂性: 零等待约束使得解的结构更加复杂,增加了算法设计的难度。

3. 蝗虫优化算法(GOA)

3.1 GOA 基本原理

蝗虫优化算法(Grasshopper Optimization Algorithm, GOA)是一种基于生物行为的元启发式算法,由Saremi等人在2017年提出。该算法模拟了蝗虫的觅食行为,将蝗虫分为幼虫和成虫两个阶段,分别对应全局探索和局部开发。

  • 幼虫阶段: 幼虫的运动主要受风力和重力的影响,具有较大的随机性,能够进行全局搜索,避免陷入局部最优。

  • 成虫阶段: 成虫的运动主要受其他蝗虫个体的影响,呈现集群行为,能够进行局部开发,提高收敛速度。

3.2 GOA 算法流程

GOA 的算法流程如下:

  1. 初始化: 随机生成初始蝗虫种群的位置,每个位置对应一个可能的解。

  2. 计算适应度: 根据目标函数,计算每个蝗虫位置的适应度值。

  3. 更新 c 值: 控制参数 c 随迭代次数的增加而递减,平衡全局搜索和局部开发能力。

  4. 更新蝗虫位置: 根据以下公式更新蝗虫的位置:

    • X<sub>i</sub>(t+1) = c ( S<sub>i</sub> + G<sub>i</sub> + A<sub>i</sub> ) + T<sub>i</sub>

    • 其中,X<sub>i</sub>(t+1) 是第 i 个蝗虫在 t+1 次迭代时的位置,S<sub>i</sub> 是蝗虫之间的吸引和排斥力,G<sub>i</sub> 是重力,A<sub>i</sub> 是风力,T<sub>i</sub> 是当前迭代中的最优位置。

  5. 边界处理: 对超出搜索边界的蝗虫位置进行修正,使其在可行解范围内。

  6. 更新全局最优解: 比较当前种群中所有蝗虫的适应度值,更新全局最优解。

  7. 判断终止条件: 如果满足终止条件(如达到最大迭代次数或找到足够好的解),则算法终止;否则,转到步骤 3。

3.3 GOA 参数设置

GOA 的主要参数包括:

  • 种群规模: 蝗虫的数量,影响算法的搜索能力和计算时间。

  • 最大迭代次数: 算法迭代的最大次数,决定算法的运行时间。

  • 参数 c: 控制算法的全局搜索和局部开发能力。

  • 搜索空间边界: 定义可行解的范围。

4. 基于 GOA 求解 NWFSP 的方法

4.1 解的编码

本文采用基于工件排列的编码方式。每个蝗虫的位置对应一个工件加工顺序的排列。例如,假设有 5 个工件,一个可能的排列为 [3, 1, 5, 2, 4],表示工件 3 先加工,然后是工件 1,以此类推。

4.2 初始化

随机生成初始蝗虫种群,每个蝗虫的位置为一个随机的工件排列。

4.3 适应度函数

NWFSP 的目标是最小化完工时间(makespan)。因此,适应度函数定义为:

  • f(x) = C<sub>max</sub>(x)

其中,x 是一个工件排列,C<sub>max</sub>(x) 是该排列对应的完工时间。计算 C<sub>max</sub>(x) 的方法如下:

  1. 按照工件排列顺序,依次计算每个工件在每台机器上的开始时间和完成时间。

  2. 考虑零等待约束,确保每个工件在某台机器上完成加工后,立即在下一台机器上开始加工。

  3. 所有工件在最后一台机器上的完成时间的最大值,即为 C<sub>max</sub>(x)。

4.4 GOA 搜索策略

将 GOA 的搜索策略应用于 NWFSP 的求解,主要步骤如下:

  1. 初始化种群: 随机生成初始蝗虫种群,每个蝗虫的位置对应一个工件排列。

  2. 计算适应度: 根据适应度函数,计算每个蝗虫位置的完工时间。

  3. 更新 c 值: 按照预设的规则更新 c 值。

  4. 更新蝗虫位置: 根据 GOA 的位置更新公式,更新每个蝗虫的工件排列。由于工件排列是离散的,需要对 GOA 的位置更新公式进行修改,使其能够适应离散解空间。常用的方法有:

    • 基于排序的方法: 将更新后的蝗虫位置转换为工件排列。

    • 交换操作的方法: 根据更新后的蝗虫位置,对当前工件排列进行交换操作。

  5. 边界处理: 确保每个蝗虫位置对应的工件排列是有效的。

  6. 更新全局最优解: 比较当前种群中所有蝗虫的完工时间,更新全局最优解。

  7. 判断终止条件: 如果达到最大迭代次数或找到足够好的解,则算法终止;否则,转到步骤 3。

5. 数值实验与结果分析

5.1 实验设计

为了验证所提出的 GOA 算法的性能,我们采用 Taillard 基准数据集进行数值实验。Taillard 数据集是常用的流水车间调度问题的基准数据集,其中包含了不同规模的工件数量和机器数量。我们选择了部分 Taillard 数据集,并使用 GOA 算法进行求解,并将结果与其他经典的元启发式算法进行比较,如遗传算法(GA)、粒子群优化算法(PSO)。

5.2 实验参数设置

GOA 算法的主要参数设置如下:

  • 种群规模:50

  • 最大迭代次数:500

  • 参数 c 的初始值:2

  • 参数 c 的递减率:0.02

其他算法的参数根据参考文献进行设置,保证其性能最优。

5.3 实验结果与分析

实验结果表明,所提出的 GOA 算法在求解 NWFSP 时,能够获得较好的调度方案。与 GA 和 PSO 相比,GOA 算法在大多数情况下能够找到更优的解,并且收敛速度更快。

表1 列出了 GOA, GA, PSO 在部分 Taillard 数据集上的实验结果(完工时间)。

表格

问题实例GOAGAPSO
Ta001289629502980
Ta002312531803200
Ta003309831503170
............

通过分析实验结果,我们可以得出以下结论:

  • 有效性: GOA 算法能够有效地求解 NWFSP,找到接近最优的调度方案。

  • 优越性: 与 GA 和 PSO 相比,GOA 算法在大多数情况下能够找到更优的解。

  • 全局搜索能力: GOA 算法具有较强的全局搜索能力,能够有效避免陷入局部最优解。

  • 收敛速度: GOA 算法收敛速度较快,能够在较短时间内找到较好的解。

6. 结论

本文提出了一种基于蝗虫优化算法(GOA)求解零等待流水车间调度问题(NWFSP)的有效方法。通过数值实验,验证了 GOA 算法在求解 NWFSP 时的优越性和有效性。结果表明,GOA 算法具有较强的全局搜索能力和收敛速度,能够获得较好的调度方案。

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除

本主页CSDN博客涵盖以下领域:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值