✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
图像,作为信息的重要载体,在各个领域发挥着不可替代的作用。然而,在图像获取、传输和存储的过程中,不可避免地会受到各种噪声的干扰,降低图像的视觉质量和后续分析的准确性。因此,图像去噪一直是图像处理领域的研究热点之一。传统的图像去噪算法主要基于滤波、统计建模等方法,但这些方法往往难以有效区分噪声和图像细节,容易造成图像模糊或引入人为伪影。近年来,基于稀疏表示的图像去噪方法凭借其优秀的去噪性能和对图像细节的良好保持能力,受到了广泛关注。本文将围绕基于稀疏约束的图像去噪算法展开研究,深入探讨其理论基础、关键技术以及发展趋势。
一、稀疏表示理论基础
稀疏表示理论的核心思想是:自然图像在合适的变换域下具有稀疏性,即图像的大部分能量集中在少数几个系数上,而其余系数则接近于零。这一理论为图像去噪提供了新的思路:可以通过找到图像在某个变换域下的稀疏表示,抑制或去除噪声系数,然后重构图像,从而实现图像去噪。
常用的变换域包括:
- 傅里叶变换 (Fourier Transform):
将图像从空间域转换到频率域,适用于周期性噪声的去除。
- 小波变换 (Wavelet Transform):
具有多分辨率分析能力,能够有效地捕捉图像中的不同尺度特征,适用于去除高斯噪声等随机噪声。
- 离散余弦变换 (Discrete Cosine Transform, DCT):
常用于JPEG等图像压缩标准中,具有良好的能量集中特性,适用于块状图像去噪。
- 学习型字典 (Learned Dictionary):
通过从训练图像中学习得到,能够更好地适应特定类型的图像,从而获得更优的稀疏表示效果。
二、基于稀疏约束的图像去噪算法关键技术
基于稀疏约束的图像去噪算法通常包含以下几个关键步骤:
-
图像分块 (Image Patch Decomposition): 将噪声图像分成若干个重叠或非重叠的图像块,每个图像块被视为一个独立的样本。这种分块策略能够有效利用图像的局部结构信息,并提高算法的效率。
-
稀疏编码 (Sparse Coding): 对于每个图像块,找到其在选定的变换域下的稀疏表示。这通常是一个优化问题,目标是最小化重构误差,并约束系数的稀疏性。常见的稀疏约束包括:
- L0 范数:
直接约束非零系数的个数,但这是一个非凸优化问题,难以求解。
- L1 范数:
L0 范数的最优凸近似,可以有效地诱导稀疏性,并可以用多种优化算法求解,例如迭代软阈值算法 (Iterative Soft-Thresholding Algorithm, ISTA) 和交替方向乘子法 (Alternating Direction Method of Multipliers, ADMM)。
- L0 范数:
-
系数阈值处理 (Coefficient Thresholding): 根据一定的阈值准则,对稀疏表示的系数进行处理,抑制或去除噪声系数。常见的阈值准则包括:
- 硬阈值 (Hard Thresholding):
将绝对值小于阈值的系数置零,保留绝对值大于阈值的系数。
- 软阈值 (Soft Thresholding):
将绝对值小于阈值的系数置零,对绝对值大于阈值的系数进行收缩。
- 硬阈值 (Hard Thresholding):
-
图像重构 (Image Reconstruction): 利用处理后的稀疏系数,重构图像块,然后将所有重构的图像块拼接成去噪后的图像。由于图像块之间存在重叠,因此需要采用一定的平均或加权平均策略,以消除拼接产生的伪影。
三、几种典型的基于稀疏约束的图像去噪算法
- K-SVD (K-Singular Value Decomposition):
是一种基于学习型字典的图像去噪算法。该算法通过交替迭代的方式,更新字典和稀疏系数,从而找到能够更好地适应图像特征的字典,并获得更优的去噪效果。
- BM3D (Block-Matching and 3D Filtering):
是一种基于非局部相似性和稀疏表示的图像去噪算法。该算法首先在图像中搜索与当前图像块相似的图像块,然后将这些相似的图像块堆叠成三维矩阵,并在三维变换域下进行稀疏编码和滤波,最后重构图像。BM3D算法凭借其优秀的去噪性能和对图像细节的良好保持能力,成为图像去噪领域的经典算法之一。
- Non-Local Means (NLM):
虽然严格意义上不算稀疏表示算法,但其非局部相似性的思想与BM3D有异曲同工之妙。 NLM算法通过对图像中所有像素进行加权平均,权值的大小取决于像素之间的相似度。这种非局部平均策略能够有效地去除噪声,并保持图像的细节信息。
四、稀疏约束图像去噪算法的优势与挑战
优势:
- 良好的去噪性能:
基于稀疏约束的图像去噪算法能够有效地去除噪声,并保持图像的细节信息,获得较好的视觉效果。
- 自适应性:
通过学习型字典等方法,能够根据图像的特征自适应地调整算法的参数,从而获得更优的去噪效果。
- 鲁棒性:
对不同类型的噪声具有较强的鲁棒性,能够在复杂噪声环境下实现有效的去噪。
⛳️ 运行结果
🔗 参考文献
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇