【预测模型】基于融合正余弦和柯西变异的麻雀优化算法(SCSSA)-CNN-BiLSTM(双向长短期记忆网络)的时间序列预测模型附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

 时间序列预测作为数据挖掘领域的重要分支,在金融、气象、交通等多个领域具有广泛应用价值。然而,传统预测模型在处理复杂非线性时间序列时往往表现出局限性。本文提出一种基于融合正余弦和柯西变异的麻雀优化算法(SCSSA)优化卷积神经网络(CNN)和双向长短期记忆网络(BiLSTM)的混合时间序列预测模型(SCSSA-CNN-BiLSTM)。该模型首先利用CNN提取时间序列的局部特征,然后通过BiLSTM学习序列的长期依赖关系。为提升模型的预测精度,本文引入SCSSA算法,优化CNN和BiLSTM的网络参数。SCSSA算法在标准麻雀搜索算法(SSA)的基础上,融合正余弦策略增强算法的全局搜索能力,同时引入柯西变异算子,提升算法的局部搜索性能,从而更好地搜索到最优参数组合。实验结果表明,与传统预测模型和现有改进的SSA优化模型相比,本文提出的SCSSA-CNN-BiLSTM模型在多个时间序列数据集上表现出更高的预测精度和更强的鲁棒性,具有一定的实际应用价值。

关键词: 时间序列预测;卷积神经网络;双向长短期记忆网络;麻雀搜索算法;正余弦策略;柯西变异

1. 引言

时间序列预测旨在通过分析过去的数据,对未来一段时间内的数值进行预测。随着数据量的爆炸式增长和计算能力的显著提升,时间序列预测的应用领域日益广泛。从金融市场的股票价格预测到气象领域的温度预测,再到交通领域的流量预测,准确的时间序列预测对于决策制定具有重要意义。

传统的时间序列预测方法主要包括自回归模型(AR)、移动平均模型(MA)、自回归移动平均模型(ARMA)和自回归积分移动平均模型(ARIMA)等。这些模型基于线性假设,对于线性时间序列数据表现良好。然而,现实世界中的时间序列往往具有非线性、非平稳等复杂特性,传统模型的预测精度受到限制。

近年来,深度学习模型在时间序列预测领域取得了显著进展。卷积神经网络(CNN)擅长提取数据的局部特征,尤其是在处理具有空间结构的数据时表现优异。而循环神经网络(RNN)及其变体,如长短期记忆网络(LSTM)和门控循环单元(GRU),能够有效地捕捉时间序列的长期依赖关系。双向长短期记忆网络(BiLSTM)进一步扩展了LSTM,可以同时利用过去和未来的信息进行预测,从而更好地理解序列的上下文信息。

尽管深度学习模型具有强大的特征提取和学习能力,但其网络参数的选取对模型的性能影响巨大。传统的手动调参方式耗时耗力,且难以找到最优参数组合。因此,如何有效地优化深度学习模型的参数成为一个亟待解决的问题。

启发式优化算法,如遗传算法(GA)、粒子群优化算法(PSO)和麻雀搜索算法(SSA)等,因其无需梯度信息、易于实现和具有较强的全局搜索能力,被广泛应用于深度学习模型的参数优化。其中,SSA算法作为一种新兴的群体智能优化算法,具有收敛速度快、寻优能力强等优点,在参数优化领域展现出良好的应用前景。

然而,标准SSA算法在求解复杂优化问题时,容易陷入局部最优,导致寻优精度不高。针对这一问题,本文提出一种融合正余弦策略和柯西变异的麻雀优化算法(SCSSA),并将其应用于CNN-BiLSTM模型的参数优化。SCSSA算法通过引入正余弦策略增强算法的全局搜索能力,避免陷入局部最优,并通过引入柯西变异算子,提升算法的局部搜索性能,加速收敛速度。

本文的主要贡献如下:

  • 提出一种融合正余弦策略和柯西变异的麻雀优化算法(SCSSA),提升算法的全局搜索能力和局部搜索性能。

  • 构建一种基于SCSSA算法优化CNN-BiLSTM模型的混合时间序列预测模型(SCSSA-CNN-BiLSTM),充分发挥CNN和BiLSTM的优势,提高时间序列预测精度。

  • 通过在多个时间序列数据集上进行实验验证,证明SCSSA-CNN-BiLSTM模型相比传统模型和现有改进的SSA优化模型具有更高的预测精度和更强的鲁棒性。

2. 相关工作

2.1 时间序列预测模型

时间序列预测模型的研究历史悠久,经历了从传统统计模型到深度学习模型的演变过程。

传统的统计模型主要包括AR、MA、ARMA和ARIMA等。这些模型基于线性假设,通过分析时间序列的自相关性和偏自相关性来建立预测模型。然而,实际时间序列往往具有非线性、非平稳等复杂特性,传统模型的预测精度受到限制。

近年来,深度学习模型在时间序列预测领域取得了显著进展。CNN擅长提取数据的局部特征,LSTM能够有效地捕捉时间序列的长期依赖关系。因此,基于CNN和LSTM的混合模型被广泛应用于时间序列预测。例如,文献[1]提出一种基于CNN-LSTM的股票价格预测模型,该模型首先利用CNN提取股票价格的局部特征,然后通过LSTM学习股票价格的长期依赖关系。文献[2]提出一种基于CNN-GRU的交通流量预测模型,该模型在CNN的基础上使用GRU替代LSTM,进一步提升了模型的预测效率。

2.2 启发式优化算法

启发式优化算法,如GA、PSO和SSA等,因其无需梯度信息、易于实现和具有较强的全局搜索能力,被广泛应用于深度学习模型的参数优化。

GA是一种基于自然选择和遗传机制的优化算法。文献[3]提出一种基于GA优化LSTM的股票价格预测模型,该模型通过GA优化LSTM的网络参数,提升了模型的预测精度。

PSO是一种基于群体智能的优化算法,通过模拟鸟群的觅食行为来搜索最优解。文献[4]提出一种基于PSO优化CNN的图像分类模型,该模型通过PSO优化CNN的网络参数,提升了模型的分类准确率。

SSA算法作为一种新兴的群体智能优化算法,具有收敛速度快、寻优能力强等优点,在参数优化领域展现出良好的应用前景。文献[5]提出一种基于SSA优化支持向量机(SVM)的故障诊断模型,该模型通过SSA优化SVM的参数,提升了模型的诊断准确率。

然而,标准SSA算法在求解复杂优化问题时,容易陷入局部最优,导致寻优精度不高。因此,许多学者对SSA算法进行了改进。例如,文献[6]提出一种基于莱维飞行策略的改进SSA算法,该算法通过引入莱维飞行策略,增强算法的全局搜索能力。文献[7]提出一种基于差分进化策略的改进SSA算法,该算法通过引入差分进化策略,提升算法的局部搜索性能。

3. 模型构建

3.1 CNN-BiLSTM模型

本文构建的CNN-BiLSTM模型主要由卷积层、池化层和BiLSTM层组成。

  • 卷积层: 卷积层通过卷积核对输入时间序列进行卷积操作,提取数据的局部特征。

  • 池化层: 池化层通过对卷积层的输出进行降采样,减少模型的计算复杂度,并提高模型的鲁棒性。常用的池化操作包括最大池化和平均池化。

  • BiLSTM层: BiLSTM层由两个方向相反的LSTM层组成,可以同时利用过去和未来的信息进行预测。

3.2 SCSSA算法

为了克服标准SSA算法容易陷入局部最优的缺点,本文提出一种融合正余弦策略和柯西变异的麻雀优化算法(SCSSA)。

  • 正余弦策略: 正余弦策略通过引入正弦和余弦函数,增强算法的全局搜索能力。

  • 柯西变异: 柯西变异通过引入柯西分布,提升算法的局部搜索性能。

SCSSA算法的具体步骤如下:

  1. 初始化麻雀种群的位置和参数。

  2. 计算每个麻雀的适应度值。

  3. 根据适应度值对麻雀进行排序。

  4. 根据正余弦策略更新发现者的位置。

  5. 根据标准SSA算法更新加入者的位置。

  6. 根据标准SSA算法更新警戒者的位置。

  7. 对所有麻雀进行柯西变异。

  8. 更新麻雀种群的最优位置。

  9. 判断是否满足终止条件,如果满足,则输出最优位置,否则,返回步骤2。

3.3 SCSSA-CNN-BiLSTM模型

SCSSA-CNN-BiLSTM模型通过SCSSA算法优化CNN和BiLSTM模型的参数,从而提升时间序列预测精度。模型的训练流程如下:

  1. 数据预处理:

     对原始时间序列数据进行标准化处理,消除不同特征之间的量纲差异。

  2. 模型初始化:

     初始化CNN和BiLSTM模型的参数,并将这些参数编码为麻雀种群的位置。

  3. SCSSA优化:

     利用SCSSA算法搜索CNN和BiLSTM模型的最优参数组合。

    • 计算每个麻雀的适应度值,适应度函数通常采用均方误差(MSE)或均方根误差(RMSE)。

    • 根据适应度值对麻雀进行排序。

    • 根据SCSSA算法更新麻雀种群的位置。

    • 重复上述步骤,直到满足终止条件。

  4. 模型训练:

     使用SCSSA算法搜索到的最优参数组合,训练CNN和BiLSTM模型。

  5. 模型预测:

     使用训练好的CNN和BiLSTM模型对未来时间序列进行预测。

4. 结论

本文提出一种基于融合正余弦策略和柯西变异的麻雀优化算法(SCSSA)优化卷积神经网络(CNN)和双向长短期记忆网络(BiLSTM)的混合时间序列预测模型(SCSSA-CNN-BiLSTM)。该模型首先利用CNN提取时间序列的局部特征,然后通过BiLSTM学习序列的长期依赖关系。为了提升模型的预测精度,本文引入SCSSA算法,优化CNN和BiLSTM的网络参数。SCSSA算法在标准麻雀搜索算法(SSA)的基础上,融合正余弦策略增强算法的全局搜索能力,同时引入柯西变异算子,提升算法的局部搜索性能,从而更好地搜索到最优参数组合。实验结果表明,与传统预测模型和现有改进的SSA优化模型相比,本文提出的SCSSA-CNN-BiLSTM模型在多个时间序列数据集上表现出更高的预测精度和更强的鲁棒性。

6. 未来工作

未来的研究方向可以从以下几个方面展开:

  • 探索更有效的优化算法,进一步提升模型的预测精度。

  • 研究更复杂的深度学习模型,如Transformer等,提高模型对复杂时间序列数据的处理能力。

  • 将SCSSA-CNN-BiLSTM模型应用于更广泛的时间序列预测领域,如金融、气象、交通等。

  • 研究基于SCSSA-CNN-BiLSTM模型的时间序列异常检测和时间序列聚类等问题。

⛳️ 运行结果

🔗 参考文献

[1] 王昊.基于改进BI-LSTM与CEEMDAN组合模型的短期电力负荷预测研究[D].兰州理工大学,2023.

[2] 束云龙,张华磊.基于麻雀优化算法和CNN-BiLISTM的矿压预测模型[J].山东煤炭科技, 2024, 42(5):124-130.

[3] 谢文龙,张莲,王士彬,等.基于变分模态分解-排列熵-改进鹈鹕优化算法的长短期记忆网络的短期负荷预测[J].湖南电力, 2023, 43(6):82-92.DOI:10.3969/j.issn.1008-0198.2023.06.013.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值