【GA-ELM预测】基于遗传算法优化极限学习机的单维时间序列预测研究附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

单维时间序列预测作为时间序列分析领域的重要分支,广泛应用于金融、气象、交通等诸多领域。其目标在于根据历史数据,预测未来一段时间内的数值变化趋势,从而为决策提供科学依据。然而,传统时间序列预测模型,如ARIMA、指数平滑等,在处理非线性、非平稳性较强的时间序列数据时往往表现不佳。近年来,机器学习算法,尤其是极限学习机(Extreme Learning Machine, ELM),凭借其快速的学习速度和良好的泛化能力,在时间序列预测领域受到了广泛关注。然而,ELM的随机初始化输入权重和隐含层偏置,在一定程度上影响了模型的预测精度和稳定性。因此,如何优化ELM的参数配置,提高其预测性能,成为一个重要的研究课题。

本文针对上述问题,提出一种基于遗传算法(Genetic Algorithm, GA)优化极限学习机的单维时间序列预测方法(GA-ELM)。该方法首先利用遗传算法的全局搜索能力,优化ELM的输入权重和隐含层偏置,然后利用优化后的参数构建ELM模型进行时间序列预测。通过实验对比,验证了GA-ELM模型在单维时间序列预测中的有效性和优越性。

一、 极限学习机(ELM)模型

极限学习机(ELM)是一种单层前馈神经网络,由Huang等人于2004年提出。与传统的神经网络相比,ELM具有学习速度快、泛化能力强等优点。其主要原理如下:

假设存在N个训练样本{(xi, ti)},其中xi ∈ Rn是输入样本,ti ∈ Rm是输出样本。ELM的目标是找到一组合适的输入权重wi、隐含层偏置bi以及输出权重β,使得网络输出逼近目标输出。ELM的数学表达式为:

∑i=1L βi g(wxj + bi) = tj, j = 1, ..., N

其中:

  • L是隐含层神经元个数;

  • g(x)是激活函数,常用的激活函数包括Sigmoid函数、ReLU函数等;

  • w

    i是输入权重,连接输入层和第i个隐含层神经元;

  • bi是第i个隐含层神经元的偏置;

  • β

    i是输出权重,连接第i个隐含层神经元和输出层神经元。

ELM的训练过程主要包括以下几个步骤:

  1. 随机初始化输入权重

     wi和隐含层偏置bi。

  2. 计算隐含层输出矩阵

     H:
    H = g(W X + b),其中W = [w1, w2, ..., wL]T,X = [x1, x2, ..., xN]T,b = [b1, b2, ..., bL]T。

  3. 计算输出权重

     β:
    β = HT,其中H+是H的Moore-Penrose广义逆,T = [t1, t2, ..., tN]T。

ELM的关键优势在于其随机初始化输入权重和隐含层偏置,并利用Moore-Penrose广义逆直接计算输出权重,避免了传统神经网络复杂的迭代训练过程。然而,这种随机性也导致了ELM模型的预测性能不稳定,容易受到初始参数的影响。

二、 遗传算法(GA)优化ELM

为了克服ELM的随机性,提高其预测性能,本文采用遗传算法(GA)优化ELM的输入权重和隐含层偏置。遗传算法是一种模拟生物进化过程的优化算法,通过选择、交叉和变异等操作,不断迭代进化,寻找最优解。

将遗传算法应用于ELM参数优化的主要步骤如下:

  1. 编码:

     将ELM的输入权重wi和隐含层偏置bi编码成染色体。每个染色体代表一组可能的ELM参数配置。

  2. 初始化种群:

     随机生成一定数量的染色体,组成初始种群。

  3. 适应度函数:

     采用合适的适应度函数评价每个染色体的优劣。本文采用均方根误差(RMSE)作为适应度函数,RMSE越小,说明该染色体对应的ELM模型预测精度越高,适应度越好。

  4. 选择:

     根据适应度值,选择优秀的染色体进入下一代。常用的选择方法包括轮盘赌选择、锦标赛选择等。

  5. 交叉:

     对选择后的染色体进行交叉操作,生成新的染色体。交叉操作可以交换染色体上的部分基因,从而产生新的参数组合。

  6. 变异:

     对交叉后的染色体进行变异操作,改变染色体上的部分基因。变异操作可以增加种群的多样性,避免算法陷入局部最优。

  7. 迭代:

     重复步骤4-6,直到达到预设的迭代次数或满足终止条件。

  8. 解码:

     将最优染色体解码为ELM的输入权重和隐含层偏置。

通过遗传算法的优化,可以找到一组更优的ELM参数配置,从而提高模型的预测精度和稳定性。

三、 GA-ELM模型的构建与预测

GA-ELM模型的构建与预测过程如下:

  1. 数据预处理:

     对原始时间序列数据进行归一化处理,消除量纲的影响。

  2. 划分数据集:

     将时间序列数据划分为训练集和测试集。训练集用于训练GA-ELM模型,测试集用于评估模型的预测性能。

  3. 初始化GA参数:

     设置遗传算法的种群大小、迭代次数、交叉概率、变异概率等参数。

  4. GA优化ELM参数:

     利用遗传算法优化ELM的输入权重和隐含层偏置。

  5. 构建ELM模型:

     利用优化后的输入权重和隐含层偏置构建ELM模型。

  6. 时间序列预测:

     利用构建好的ELM模型,对测试集进行时间序列预测。

  7. 性能评估:

     采用均方根误差(RMSE)、平均绝对误差(MAE)等指标评估模型的预测性能。

四、 结论与展望

本文提出了一种基于遗传算法优化极限学习机的单维时间序列预测方法(GA-ELM)。该方法利用遗传算法的全局搜索能力,优化ELM的输入权重和隐含层偏置,从而提高模型的预测精度和稳定性。实验结果表明,GA-ELM模型在单维时间序列预测中具有显著的优势。

未来的研究方向包括:

  • 探索更有效的遗传算法策略:

     进一步改进遗传算法的选择、交叉和变异操作,提高算法的优化效率。

  • 研究更有效的ELM参数优化方法:

     探索其他优化算法,如粒子群优化算法、人工蜂群算法等,用于优化ELM的参数。

  • 将GA-ELM模型应用于多维时间序列预测:

     将GA-ELM模型扩展到多维时间序列预测领域,解决更复杂的时间序列预测问题。

  • 研究GA-ELM模型的实时预测能力:

     探索GA-ELM模型在实时时间序列预测中的应用,提高模型的响应速度。

⛳️ 运行结果

🔗 参考文献

[1] 王景丽,李亮,郁磊,等.基于遗传算法和极限学习机的Fugl-Meyer量表自动评估[J].计算机应用, 2014, 34(3):5.DOI:10.11772/j.issn.1001-9081.2014.03.0907.

[2] 许童羽.基于GA-ELM的寒地水稻缺氮量诊断方法研究[J].农业工程学报, 2019(2).

[3] 乔威豪,安葳鹏,赵雪菡,等.基于改进极限学习机的煤与瓦斯突出预测研究[J].矿业研究与开发, 2024, 44(5):98-105.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值