💥💥💞💞欢迎来到Matlab仿真科研站博客之家💞💞💥💥
✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,Matlab项目合作可私信。
🍎个人主页:Matlab仿真科研站博客之家
🏆代码获取方式:
💥扫描文章底部QQ二维码💥
⛳️座右铭:行百里者,半于九十;路漫漫其修远兮,吾将上下而求索。
⛄更多Matlab路径规划(仿真科研站版)仿真内容点击👇
Matlab路径规划(仿真科研站版)
⛄一、卡尔曼滤波路径追踪优化简介
割草机器人通过比对当前t时刻位置、导航方程之间偏移角度θ和偏移距离d,确定t+1时刻的运动方向属于递推型路径追踪。割草机器人工作过程中受到地面起伏等环境因素影响,在采用上述追踪方法时会和预测值产生偏差,造成机器人偏离导航方程,称之为系统预测误差。采用图像处理规划导航路径时,同样也会产生偏差,称为检测误差。由于地形环境因素和割草边界线图像检测误差均为偶然性误差,符合高斯白噪声,因此采用卡尔曼滤波的方法对割草机器人路径追踪进行优化。其核心思想为:比对预测值和检测值协方差,进而采用递推的方式计算出下一时刻系统路径最优解。
由于机器人在运动过程中受地面起伏影响,因此噪声矩阵Wt均值为0,协方差为Q。
机器人检测只关心当前位置,进而和导航方程进行比对,因此系统检测模型为
结合式(11)、式(12)构建卡尔曼滤波系统预测方程为
预测值与检测值协方差为
以当前协方差为判定依据,综合考虑系统预测值和图像检测值,下一时刻最优化值为
其中,Kt+1为卡尔曼滤波增益。
协方差下一时刻更新,则
至此完成t+1时刻路径追踪优化,转向t+2时刻。
⛄二、部分源代码
clear;
clc;
load ‘track_352.mat’;%原始赛道信息
load ‘body.mat’;%车辆信息
load ‘dynamic_constrains.mat’;%动力学约束
safe_dist = 2;%距离障碍物安全距离
%% 平滑插值赛道
tolerance = 10;%先线性插值,去掉大间隙
[track_x,track_y] = track_smooth_linear(track_x,track_y,tolerance);
tolerance = 3;%然后三次样条线插值,达到最终步长
[track_x,track_y] = track_smooth_spline(track_x,track_y,tolerance);
clear tolerance;
%% 求得与赛道长度对应的样条线参数
[c,~] = size(track_x);
[spline_A] = spline_matrix_gen©;%样条线求解矩阵,要留在内存中,加速计算
para_x = spline_A * track_x;%x三次样条参数
para_y = spline_A * track_y;%y三次样条参数
%% 单位切向量
[vector] = vector_gen(para_x,para_y,c);
%% 绘制中心线、左右边界及障碍物
draw_track(track_x,track_y,vector,track_w,obs_x,obs_y,c);
%% QP优化初始化
alpha_out = zeros(c,1);%本次次迭代结果
alpha_last = zeros(c,1);%上一次迭代结果
[lb,ub] = init_lub(track_w,body.Wb,c);%上下界初始化
[Aieq,bieq] = init_ieq(track_x,track_y,obs_x,obs_y,safe_dist,c);%有关障碍物的不等式约束初始化
stop_inter_thres = c * 0.01;%每一次迭代后所有点上横向改变平方和,每一个点上差别不超过1厘米
inter_val = 100000;%初始停止条件数值
path_cnt = 0;%迭代次数
%% QP优化
%不下降时停止迭代
tic;
while inter_val >= stop_inter_thres
[alpha_out,alpha_last,lb,ub,track_x,track_y,vector] = QP_optimization(spline_A,alpha_out,alpha_last,lb,ub,Aieq,bieq,track_x,track_y,vector,c);
inter_val = sum(alpha_out.^2);
path_cnt = path_cnt + 1;
end
[c_alpha,~] = size(alpha_out);
if c_alpha == 0
alpha_out = zeros(c,1);%以防无解
end
clear c_alpha;
path_t = toc;
clc;
clear stop_inter_thres inter_val lb ub Aieq bieq;
%% 生成最优路径及其信息
draw_optimised_path(track_x,track_y,vector,alpha_out,‘m’);%绘制最优路径
[track_x,track_y] = path_gen(track_x,track_y,vector,alpha_out);%保存最优路径
[path_distance] = path_distance_calculate(track_x,track_y,c);%沿最优路径距离
para_x = spline_A * track_x;
para_y = spline_A * track_y;
[vector] = vector_gen(para_x,para_y,c);
[phi] = phi_accum_gen(vector,c);%参考车辆航向角
[curvature_res] = get_curvature(para_x,para_y,c);%参考曲率
clear obs_x obs_y obs_w safe_dist alpha_out alpha_last;
%% 速度规划
[apex_location,apex_cnt] = get_apex(curvature_res,c);%标记Apex点
vmax = 40;%限制最高直线车速
[vel_geo] = geometry_vel_calculate(curvature_res,vmax,ay_para,c);%计算几何速度限制
[vel_forward] = forward_calculate(apex_location,apex_cnt,vel_geo,curvature_res,path_distance,acc_para,ay_para,c);%加速限制
[vel_backward] = backward_calculate(apex_location,apex_cnt,vel_geo,curvature_res,path_distance,brk_para,ay_para,c);%减速限制
vel_profile = min(vel_geo,min(vel_forward,vel_backward));%三种取最小值
[vel_flying] = init_vel_calculate(vel_profile,vel_profile(end),acc_para,ay_para,path_distance,curvature_res,c);%飞驰圈速度规划
delta_profile = atan(curvature_res * body.l / 1000);
clear apex_location apex_cnt vel_geo vel_forward vel_backward acc_para ay_para brk_para vmax vel_profile;
%% 绘制速度规划
figure(2);
clf;
subplot(2,1,1);
plot(path_distance,vel_flying,‘r’);%绘制速度-距离规划
xlabel(‘S\m’);
ylabel(‘v\m*s^-1’);
title(‘velocity profile and history’);
subplot(2,1,2);
plot(path_distance,delta_profile,‘r’);%绘制方向盘转角-距离规划
xlabel(‘S\m’);
ylabel(‘\delta \deg’);
title(‘steering profile and history’);
%% 仿真参数设置
dt = 0.1;%时间间隔
np = 20;%预测步长
nc = 10;%控制步长
nx = 3;%状态量数目
nu = 2;%控制量数目
%% 参考量设置
state_ref = [track_x,track_y,phi,curvature_res,vel_flying,path_distance];
%% 物理限制设置
u_max = [40;0.5];
u_min = [2;-0.5];
du_max = [0.2;0.2];
du_min = [-0.2;-0.2];
%% 车辆参数及状态设置
l = body.l / 1000;
target_v = vel_flying(1);%期望速度
delta = 0;%当前转向角
travel = 0;%当前里程
control_d = [0;0];%上一时刻控制偏差
control_act = [target_v;delta];%当前实际控制值
control = [control_act];%储存实际控制指令
x_d = [0;0;0];%当前状态偏差
x_act = [track_x(1);track_y(1);phi(1)];
x_res = [x_act];%储存实际状态
travel_history = [travel];%里程表历史
%% 权重矩阵及观测矩阵生成
[Qt,Rt,Ct,rou] = weight_matrix_gen(nx,nu,np,nc);
%%
index = 0;
tic;
mpc_cnt = 0;
while index < c - 1
% 矩阵生成↓↓↓
[At,Bt] = sequential_increment_matrix_gen(x_act,control_act,Ct,np,nc,body,dt);
% 求当前点偏差↓↓↓
[x_d,index] = find_state_ref_err(para_x,para_y,state_ref,x_act,travel,c);
target_v = vel_flying(index);
% 求当前约束↓↓↓
[A_eqst,b_eqst,A_ieqst,b_ieqst,lb,ub] = get_constrains(u_max,u_min,du_max,du_min,control_act,nc,nu);
% 求最优控制量偏差↓↓↓
yita = [x_d;control_d];
H = [Bt’ * Qt * Bt + Rt,zeros(size(Bt,2),1);zeros(1,size(Bt,2)),rou];
H = H + H’;%quadprog程序是求1/2H,故将其变为二倍
F = [2 * yita’ * At’ * Qt * Bt,0]';%最后一个对应松弛变量
U_out = quadprog(H,F,A_ieqst,b_ieqst,A_eqst,b_eqst,lb,ub);
% 求最优控制量↓↓↓
delta_des = delta_profile(index);%该点处期望转向角
control_act = [target_v;delta_des] + control_d + [U_out(1);U_out(2)];%用得到的控制偏差和上一步的控制偏差修正
control_act(1) = min(control_act(1),target_v);
control = [control,control_act];%储存
control_d = [U_out(1);U_out(2)];%更新当前的控制偏差
% 更新并储存状态↓↓↓
[x_act,travel] = update_state(x_act,control_act,dt,l,travel);
x_res = [x_res,x_act];%储存
mpc_cnt = mpc_cnt + 1;
travel_history = [travel_history;travel];%储存里程历史
end
⛄三、运行结果
⛄四、matlab版本及参考文献
1 matlab版本
2014a
2 参考文献
[1]白刚.卡尔曼滤波在割草机器人路径追踪优化中应用[J].农机化研究. 2021,43(06)
3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除
🍅 仿真咨询
1 各类智能优化算法改进及应用
1.1 PID优化
1.2 VMD优化
1.3 配电网重构
1.4 三维装箱
1.5 微电网优化
1.6 优化布局
1.7 优化参数
1.8 优化成本
1.9 优化充电
1.10 优化调度
1.11 优化电价
1.12 优化发车
1.13 优化分配
1.14 优化覆盖
1.15 优化控制
1.16 优化库存
1.17 优化路由
1.18 优化设计
1.19 优化位置
1.20 优化吸波
1.21 优化选址
1.22 优化运行
1.23 优化指派
1.24 优化组合
1.25 车间调度
1.26 生产调度
1.27 经济调度
1.28 装配线调度
1.29 水库调度
1.30 货位优化
1.31 公交排班优化
1.32 集装箱船配载优化
1.33 水泵组合优化
1.34 医疗资源分配优化
1.35 可视域基站和无人机选址优化
2 机器学习和深度学习分类与预测
2.1 机器学习和深度学习分类
2.1.1 BiLSTM双向长短时记忆神经网络分类
2.1.2 BP神经网络分类
2.1.3 CNN卷积神经网络分类
2.1.4 DBN深度置信网络分类
2.1.5 DELM深度学习极限学习机分类
2.1.6 ELMAN递归神经网络分类
2.1.7 ELM极限学习机分类
2.1.8 GRNN广义回归神经网络分类
2.1.9 GRU门控循环单元分类
2.1.10 KELM混合核极限学习机分类
2.1.11 KNN分类
2.1.12 LSSVM最小二乘法支持向量机分类
2.1.13 LSTM长短时记忆网络分类
2.1.14 MLP全连接神经网络分类
2.1.15 PNN概率神经网络分类
2.1.16 RELM鲁棒极限学习机分类
2.1.17 RF随机森林分类
2.1.18 SCN随机配置网络模型分类
2.1.19 SVM支持向量机分类
2.1.20 XGBOOST分类
2.2 机器学习和深度学习预测
2.2.1 ANFIS自适应模糊神经网络预测
2.2.2 ANN人工神经网络预测
2.2.3 ARMA自回归滑动平均模型预测
2.2.4 BF粒子滤波预测
2.2.5 BiLSTM双向长短时记忆神经网络预测
2.2.6 BLS宽度学习神经网络预测
2.2.7 BP神经网络预测
2.2.8 CNN卷积神经网络预测
2.2.9 DBN深度置信网络预测
2.2.10 DELM深度学习极限学习机预测
2.2.11 DKELM回归预测
2.2.12 ELMAN递归神经网络预测
2.2.13 ELM极限学习机预测
2.2.14 ESN回声状态网络预测
2.2.15 FNN前馈神经网络预测
2.2.16 GMDN预测
2.2.17 GMM高斯混合模型预测
2.2.18 GRNN广义回归神经网络预测
2.2.19 GRU门控循环单元预测
2.2.20 KELM混合核极限学习机预测
2.2.21 LMS最小均方算法预测
2.2.22 LSSVM最小二乘法支持向量机预测
2.2.23 LSTM长短时记忆网络预测
2.2.24 RBF径向基函数神经网络预测
2.2.25 RELM鲁棒极限学习机预测
2.2.26 RF随机森林预测
2.2.27 RNN循环神经网络预测
2.2.28 RVM相关向量机预测
2.2.29 SVM支持向量机预测
2.2.30 TCN时间卷积神经网络预测
2.2.31 XGBoost回归预测
2.2.32 模糊预测
2.2.33 奇异谱分析方法SSA时间序列预测
2.3 机器学习和深度学习实际应用预测
CPI指数预测、PM2.5浓度预测、SOC预测、财务预警预测、产量预测、车位预测、虫情预测、带钢厚度预测、电池健康状态预测、电力负荷预测、房价预测、腐蚀率预测、故障诊断预测、光伏功率预测、轨迹预测、航空发动机寿命预测、汇率预测、混凝土强度预测、加热炉炉温预测、价格预测、交通流预测、居民消费指数预测、空气质量预测、粮食温度预测、气温预测、清水值预测、失业率预测、用电量预测、运输量预测、制造业采购经理指数预测
3 图像处理方面
3.1 图像边缘检测
3.2 图像处理
3.3 图像分割
3.4 图像分类
3.5 图像跟踪
3.6 图像加密解密
3.7 图像检索
3.8 图像配准
3.9 图像拼接
3.10 图像评价
3.11 图像去噪
3.12 图像融合
3.13 图像识别
3.13.1 表盘识别
3.13.2 车道线识别
3.13.3 车辆计数
3.13.4 车辆识别
3.13.5 车牌识别
3.13.6 车位识别
3.13.7 尺寸检测
3.13.8 答题卡识别
3.13.9 电器识别
3.13.10 跌倒检测
3.13.11 动物识别
3.13.12 二维码识别
3.13.13 发票识别
3.13.14 服装识别
3.13.15 汉字识别
3.13.16 红绿灯识别
3.13.17 虹膜识别
3.13.18 火灾检测
3.13.19 疾病分类
3.13.20 交通标志识别
3.13.21 卡号识别
3.13.22 口罩识别
3.13.23 裂缝识别
3.13.24 目标跟踪
3.13.25 疲劳检测
3.13.26 旗帜识别
3.13.27 青草识别
3.13.28 人脸识别
3.13.29 人民币识别
3.13.30 身份证识别
3.13.31 手势识别
3.13.32 数字字母识别
3.13.33 手掌识别
3.13.34 树叶识别
3.13.35 水果识别
3.13.36 条形码识别
3.13.37 温度检测
3.13.38 瑕疵检测
3.13.39 芯片检测
3.13.40 行为识别
3.13.41 验证码识别
3.13.42 药材识别
3.13.43 硬币识别
3.13.44 邮政编码识别
3.13.45 纸牌识别
3.13.46 指纹识别
3.14 图像修复
3.15 图像压缩
3.16 图像隐写
3.17 图像增强
3.18 图像重建
4 路径规划方面
4.1 旅行商问题(TSP)
4.1.1 单旅行商问题(TSP)
4.1.2 多旅行商问题(MTSP)
4.2 车辆路径问题(VRP)
4.2.1 车辆路径问题(VRP)
4.2.2 带容量的车辆路径问题(CVRP)
4.2.3 带容量+时间窗+距离车辆路径问题(DCTWVRP)
4.2.4 带容量+距离车辆路径问题(DCVRP)
4.2.5 带距离的车辆路径问题(DVRP)
4.2.6 带充电站+时间窗车辆路径问题(ETWVRP)
4.2.3 带多种容量的车辆路径问题(MCVRP)
4.2.4 带距离的多车辆路径问题(MDVRP)
4.2.5 同时取送货的车辆路径问题(SDVRP)
4.2.6 带时间窗+容量的车辆路径问题(TWCVRP)
4.2.6 带时间窗的车辆路径问题(TWVRP)
4.3 多式联运运输问题
4.4 机器人路径规划
4.4.1 避障路径规划
4.4.2 迷宫路径规划
4.4.3 栅格地图路径规划
4.5 配送路径规划
4.5.1 冷链配送路径规划
4.5.2 外卖配送路径规划
4.5.3 口罩配送路径规划
4.5.4 药品配送路径规划
4.5.5 含充电站配送路径规划
4.5.6 连锁超市配送路径规划
4.5.7 车辆协同无人机配送路径规划
4.6 无人机路径规划
4.6.1 飞行器仿真
4.6.2 无人机飞行作业
4.6.3 无人机轨迹跟踪
4.6.4 无人机集群仿真
4.6.5 无人机三维路径规划
4.6.6 无人机编队
4.6.7 无人机协同任务
4.6.8 无人机任务分配
5 语音处理
5.1 语音情感识别
5.2 声源定位
5.3 特征提取
5.4 语音编码
5.5 语音处理
5.6 语音分离
5.7 语音分析
5.8 语音合成
5.9 语音加密
5.10 语音去噪
5.11 语音识别
5.12 语音压缩
5.13 语音隐藏
6 元胞自动机方面
6.1 元胞自动机病毒仿真
6.2 元胞自动机城市规划
6.3 元胞自动机交通流
6.4 元胞自动机气体
6.5 元胞自动机人员疏散
6.6 元胞自动机森林火灾
6.7 元胞自动机生命游戏
7 信号处理方面
7.1 故障信号诊断分析
7.1.1 齿轮损伤识别
7.1.2 异步电机转子断条故障诊断
7.1.3 滚动体内外圈故障诊断分析
7.1.4 电机故障诊断分析
7.1.5 轴承故障诊断分析
7.1.6 齿轮箱故障诊断分析
7.1.7 三相逆变器故障诊断分析
7.1.8 柴油机故障诊断
7.2 雷达通信
7.2.1 FMCW仿真
7.2.2 GPS抗干扰
7.2.3 雷达LFM
7.2.4 雷达MIMO
7.2.5 雷达测角
7.2.6 雷达成像
7.2.7 雷达定位
7.2.8 雷达回波
7.2.9 雷达检测
7.2.10 雷达数字信号处理
7.2.11 雷达通信
7.2.12 雷达相控阵
7.2.13 雷达信号分析
7.2.14 雷达预警
7.2.15 雷达脉冲压缩
7.2.16 天线方向图
7.2.17 雷达杂波仿真
7.3 生物电信号
7.3.1 肌电信号EMG
7.3.2 脑电信号EEG
7.3.3 心电信号ECG
7.3.4 心脏仿真
7.4 通信系统
7.4.1 DOA估计
7.4.2 LEACH协议
7.4.3 编码译码
7.4.4 变分模态分解
7.4.5 超宽带仿真
7.4.6 多径衰落仿真
7.4.7 蜂窝网络
7.4.8 管道泄漏
7.4.9 经验模态分解
7.4.10 滤波器设计
7.4.11 模拟信号传输
7.4.12 模拟信号调制
7.4.13 数字基带信号
7.4.14 数字信道
7.4.15 数字信号处理
7.4.16 数字信号传输
7.4.17 数字信号去噪
7.4.18 水声通信
7.4.19 通信仿真
7.4.20 无线传输
7.4.21 误码率仿真
7.4.22 现代通信
7.4.23 信道估计
7.4.24 信号检测
7.4.25 信号融合
7.4.26 信号识别
7.4.27 压缩感知
7.4.28 噪声仿真
7.4.29 噪声干扰
7.5 无人机通信
7.6 无线传感器定位及布局方面
7.6.1 WSN定位
7.6.2 高度预估
7.6.3 滤波跟踪
7.6.4 目标定位
7.6.4.1 Dv-Hop定位
7.6.4.2 RSSI定位
7.6.4.3 智能算法优化定位
7.6.5 组合导航
8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置