【目标定位】基于扩展卡尔曼滤波EKF实现GPS-IMU组合定位附Matlab代码

本文介绍了如何利用扩展卡尔曼滤波EKF算法提升GPS和IMU的互补优势,以提高定位精度和鲁棒性。通过分析GPS和IMU测量模型,构建并仿真验证了这种方法在无人机和自动驾驶等领域的实际应用效果。
摘要由CSDN通过智能技术生成

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,

代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

🔥 内容介绍

摘要

本文提出了一种基于扩展卡尔曼滤波EKF的GPS-IMU组合定位方法。该方法利用GPS和IMU的互补优势,提高了定位精度和鲁棒性。首先,对GPS和IMU的测量模型进行了分析,建立了状态方程和观测方程。然后,利用扩展卡尔曼滤波EKF对状态方程和观测方程进行估计,得到系统的状态估计值。最后,通过仿真实验验证了该方法的有效性。

1. 引言

随着无人机、自动驾驶等技术的快速发展,对定位精度的要求越来越高。GPS是目前最常用的定位技术,但其存在着精度低、易受干扰等缺点。IMU是一种惯性导航系统,可以提供高精度的速度和加速度信息,但其存在着漂移误差大的缺点。为了提高定位精度和鲁棒性,可以将GPS和IMU进行组合定位。

GPS-IMU组合定位的基本原理是,利用GPS的高精度位置信息来校正IMU的漂移误差,从而提高定位精度。目前,常用的GPS-IMU组合定位方法有卡尔曼滤波、扩展卡尔曼滤波EKF和粒子滤波等。其中,扩展卡尔曼滤波EKF是一种非线性滤波器,可以处理非线性的状态方程和观测方程,因此非常适合于GPS-IMU组合定位。

2. GPS-IMU组合定位模型

2.1 GPS测量模型

3. 扩展卡尔曼滤波EKF算法

扩展卡尔曼滤波EKF算法是一种非线性滤波器,可以处理非线性的状态方程和观测方程。其基本步骤如下:

📣 部分代码

function [X,Y] = Groud_Truth()X=zeros(361,1);Y=zeros(361,1);result0=lonLat2Mercator(121.415633,31.029636);%第一段result1=lonLat2Mercator(121.415274,31.029524);for t=1:39  X(t)=result0.X+(result1.X-result0.X)/39*t;  Y(t)=result0.Y+(result1.Y-result0.Y)/39*t;end%第二段result2=lonLat2Mercator(121.415260,31.029545);for t=1:3    X(t+39)=X(39)+(result2.X-result1.X)/3*t;  Y(t+39)=Y(39)+(result2.Y-result1.Y)/3*t;end%第三段result3=lonLat2Mercator(121.415180,31.029517);for t=1:9    X(t+42)=X(42)+(result3.X-result2.X)/9*t;  Y(t+42)=Y(42)+(result3.Y-result2.Y)/9*t;end%第四段result4=lonLat2Mercator(121.415074,31.029778);for t=1:30    X(t+51)=X(51)+(result4.X-result3.X)/30*t;  Y(t+51)=Y(51)+(result4.Y-result3.Y)/30*t;end%第五段result5=lonLat2Mercator(121.414834,31.029709);for t=1:20    X(t+81)=X(81)+(result5.X-result4.X)/20*t;  Y(t+81)=Y(81)+(result5.Y-result4.Y)/20*t;end%第六段result6=lonLat2Mercator(121.414735,31.029686);for t=1:11    X(t+101)=X(101)+(result6.X-result5.X)/11*t;  Y(t+101)=Y(101)+(result6.Y-result5.Y)/11*t;end%第七段result7=lonLat2Mercator(121.415083,31.028926);for t=1:92    X(t+112)=X(112)+(result7.X-result6.X)/92*t;  Y(t+112)=Y(112)+(result7.Y-result6.Y)/92*t;end%第八段result8=lonLat2Mercator(121.415974,31.029208);for t=1:91    X(t+204)=X(204)+(result8.X-result7.X)/91*t;  Y(t+204)=Y(204)+(result8.Y-result7.Y)/91*t;end%第九段result9=lonLat2Mercator(121.415765,31.029677);for t=1:55    X(t+295)=X(295)+(result9.X-result8.X)/55*t;  Y(t+295)=Y(295)+(result9.Y-result8.Y)/55*t;end%第十段result10=lonLat2Mercator(121.415633,31.029636);for t=1:11    X(t+350)=X(350)+(result10.X-result9.X)/11*t;  Y(t+350)=Y(350)+(result10.Y-result9.Y)/11*t;end%  %显示真实轨迹%  cordinatex=round(X(1));% cordinatey=round(Y(1));%  plot(X,Y,'r'),grid on;% axis([cordinatex-200 cordinatex+200 cordinatey-200 cordinatey+200]),grid on;% %  legend('目标真实航迹');% axis equal;

⛳️ 运行结果

4. 仿真实验

为了验证该方法的有效性,进行了仿真实验。仿真实验中,使用的是GPS和IMU的数据。GPS的数据是每秒10Hz,IMU的数据是每秒100Hz。仿真实验的结果表明,该方法可以有效地提高定位精度和鲁棒性。

5. 结论

本文提出了一种基于扩展卡尔曼滤波EKF的GPS-IMU组合定位方法。该方法利用GPS和IMU的互补优势,提高了定位精度和鲁棒性。仿真实验结果表明,该方法可以有效地提高定位精度和鲁棒性。

🔗 参考文献

[1] 亢红波,吴冠,慈澎馨.基于扩展Kalman滤波器的GPS/DR组合车辆定位系统[J].航天制造技术, 2007(2):4.DOI:CNKI:SUN:HTGY.0.2007-02-015.

[2] 黄攀.基于GPS/DR紧组合车载导航系统研究及实现[D].哈尔滨工程大学[2024-01-30].DOI:CNKI:CDMD:2.1014.133237.

[3] 黄攀.基于GPS/DR紧组合车载导航系统研究及实现[D].哈尔滨工程大学,2014.

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码、论文复现、期刊合作、论文辅导及科研仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化
2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值