✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,
代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
摘要
本文提出了一种基于扩展卡尔曼滤波EKF的GPS-IMU组合定位方法。该方法利用GPS和IMU的互补优势,提高了定位精度和鲁棒性。首先,对GPS和IMU的测量模型进行了分析,建立了状态方程和观测方程。然后,利用扩展卡尔曼滤波EKF对状态方程和观测方程进行估计,得到系统的状态估计值。最后,通过仿真实验验证了该方法的有效性。
1. 引言
随着无人机、自动驾驶等技术的快速发展,对定位精度的要求越来越高。GPS是目前最常用的定位技术,但其存在着精度低、易受干扰等缺点。IMU是一种惯性导航系统,可以提供高精度的速度和加速度信息,但其存在着漂移误差大的缺点。为了提高定位精度和鲁棒性,可以将GPS和IMU进行组合定位。
GPS-IMU组合定位的基本原理是,利用GPS的高精度位置信息来校正IMU的漂移误差,从而提高定位精度。目前,常用的GPS-IMU组合定位方法有卡尔曼滤波、扩展卡尔曼滤波EKF和粒子滤波等。其中,扩展卡尔曼滤波EKF是一种非线性滤波器,可以处理非线性的状态方程和观测方程,因此非常适合于GPS-IMU组合定位。
2. GPS-IMU组合定位模型
2.1 GPS测量模型
3. 扩展卡尔曼滤波EKF算法
扩展卡尔曼滤波EKF算法是一种非线性滤波器,可以处理非线性的状态方程和观测方程。其基本步骤如下:
📣 部分代码
function [X,Y] = Groud_Truth()
X=zeros(361,1);
Y=zeros(361,1);
result0=lonLat2Mercator(121.415633,31.029636);
%第一段
result1=lonLat2Mercator(121.415274,31.029524);
for t=1:39
X(t)=result0.X+(result1.X-result0.X)/39*t;
Y(t)=result0.Y+(result1.Y-result0.Y)/39*t;
end
%第二段
result2=lonLat2Mercator(121.415260,31.029545);
for t=1:3
X(t+39)=X(39)+(result2.X-result1.X)/3*t;
Y(t+39)=Y(39)+(result2.Y-result1.Y)/3*t;
end
%第三段
result3=lonLat2Mercator(121.415180,31.029517);
for t=1:9
X(t+42)=X(42)+(result3.X-result2.X)/9*t;
Y(t+42)=Y(42)+(result3.Y-result2.Y)/9*t;
end
%第四段
result4=lonLat2Mercator(121.415074,31.029778);
for t=1:30
X(t+51)=X(51)+(result4.X-result3.X)/30*t;
Y(t+51)=Y(51)+(result4.Y-result3.Y)/30*t;
end
%第五段
result5=lonLat2Mercator(121.414834,31.029709);
for t=1:20
X(t+81)=X(81)+(result5.X-result4.X)/20*t;
Y(t+81)=Y(81)+(result5.Y-result4.Y)/20*t;
end
%第六段
result6=lonLat2Mercator(121.414735,31.029686);
for t=1:11
X(t+101)=X(101)+(result6.X-result5.X)/11*t;
Y(t+101)=Y(101)+(result6.Y-result5.Y)/11*t;
end
%第七段
result7=lonLat2Mercator(121.415083,31.028926);
for t=1:92
X(t+112)=X(112)+(result7.X-result6.X)/92*t;
Y(t+112)=Y(112)+(result7.Y-result6.Y)/92*t;
end
%第八段
result8=lonLat2Mercator(121.415974,31.029208);
for t=1:91
X(t+204)=X(204)+(result8.X-result7.X)/91*t;
Y(t+204)=Y(204)+(result8.Y-result7.Y)/91*t;
end
%第九段
result9=lonLat2Mercator(121.415765,31.029677);
for t=1:55
X(t+295)=X(295)+(result9.X-result8.X)/55*t;
Y(t+295)=Y(295)+(result9.Y-result8.Y)/55*t;
end
%第十段
result10=lonLat2Mercator(121.415633,31.029636);
for t=1:11
X(t+350)=X(350)+(result10.X-result9.X)/11*t;
Y(t+350)=Y(350)+(result10.Y-result9.Y)/11*t;
end
% %显示真实轨迹
% cordinatex=round(X(1));
% cordinatey=round(Y(1));
% plot(X,Y,'r'),grid on;
% axis([cordinatex-200 cordinatex+200 cordinatey-200 cordinatey+200]),grid on;
%
% legend('目标真实航迹');
% axis equal;
⛳️ 运行结果
4. 仿真实验
为了验证该方法的有效性,进行了仿真实验。仿真实验中,使用的是GPS和IMU的数据。GPS的数据是每秒10Hz,IMU的数据是每秒100Hz。仿真实验的结果表明,该方法可以有效地提高定位精度和鲁棒性。
5. 结论
本文提出了一种基于扩展卡尔曼滤波EKF的GPS-IMU组合定位方法。该方法利用GPS和IMU的互补优势,提高了定位精度和鲁棒性。仿真实验结果表明,该方法可以有效地提高定位精度和鲁棒性。
🔗 参考文献
[1] 亢红波,吴冠,慈澎馨.基于扩展Kalman滤波器的GPS/DR组合车辆定位系统[J].航天制造技术, 2007(2):4.DOI:CNKI:SUN:HTGY.0.2007-02-015.
[2] 黄攀.基于GPS/DR紧组合车载导航系统研究及实现[D].哈尔滨工程大学[2024-01-30].DOI:CNKI:CDMD:2.1014.133237.
[3] 黄攀.基于GPS/DR紧组合车载导航系统研究及实现[D].哈尔滨工程大学,2014.