✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
摘要
本文提出了一种基于哈里斯鹰算法(HHO)的复杂地形无人机三维航迹规划方法。该方法将HHO算法应用于无人机三维航迹规划问题,并通过改进HHO算法的搜索策略和收敛速度,提高了算法的性能。实验结果表明,该方法能够有效地规划出复杂地形下无人机的三维航迹,并具有较高的规划精度和鲁棒性。
1. 引言
随着无人机技术的发展,无人机在军事、民用等领域得到了广泛的应用。在复杂地形下,无人机需要能够自主规划出安全的航迹,以避免与障碍物发生碰撞。传统的无人机航迹规划方法大多基于人工设计规则或启发式算法,这些方法往往存在规划精度低、鲁棒性差等问题。
2. 哈里斯鹰算法(HHO)
哈里斯鹰算法(HHO)是一种新型的元启发式算法,它模拟了哈里斯鹰捕食行为来寻找最优解。HHO算法具有搜索范围广、收敛速度快等优点,已成功应用于许多优化问题。
3. HHO算法改进
为了进一步提高HHO算法的性能,本文对HHO算法进行了以下改进:
-
改进了HHO算法的搜索策略。在传统的HHO算法中,哈里斯鹰的搜索位置是随机生成的。本文提出了一种新的搜索策略,该策略能够根据哈里斯鹰当前的位置和速度来生成新的搜索位置,从而提高了算法的搜索效率。
-
改进了HHO算法的收敛速度。在传统的HHO算法中,哈里斯鹰的收敛速度较慢。本文提出了一种新的收敛策略,该策略能够加快哈里斯鹰的收敛速度,从而提高了算法的收敛效率。
4. HHO算法应用于无人机三维航迹规划
本文将改进后的HHO算法应用于无人机三维航迹规划问题。无人机三维航迹规划问题可以表述为:给定无人机的初始位置和目标位置,在复杂地形下规划出一条安全的航迹,使得无人机能够从初始位置飞到目标位置,并避免与障碍物发生碰撞。
📣 部分代码
function [V,F] = DrawCuboid(long, wide, pretty, x,y,z)
% Input:long wide pretty (position: x,y)
% long = 200; wide = 150; pretty = 5; x = 20; y =20;
V = [x y z; x+long y z; x y+wide z; x+long y+wide z; x y z+pretty; x+long y z+pretty; x y+wide z+pretty; x+long y+wide z+pretty];
F = [1 2 4 3; 5 6 8 7; 1 2 6 5; 3 4 8 7; 1 5 7 3; 2 6 8 4];
FC=[0,200,100]./255; % 障碍外观颜色
patch('Vertices',V,'Faces',F,'FaceColor',FC);
end
⛳️ 运行结果
5. 实验结果
本文通过仿真实验对改进后的HHO算法进行了验证。实验结果表明,改进后的HHO算法能够有效地规划出复杂地形下无人机的三维航迹,并具有较高的规划精度和鲁棒性。
6. 结论
本文提出了一种基于改进后的HHO算法的复杂地形无人机三维航迹规划方法。该方法能够有效地规划出复杂地形下无人机的三维航迹,并具有较高的规划精度和鲁棒性。该方法为复杂地形下无人机的自主航迹规划提供了一种新的思路。
🔗 参考文献
[1] 刘春玲,冯锦龙,田玉琪,等.基于改进粒子群算法的无人机航迹规划[J].计算机仿真, 2023(010):040.
[2] 何文彪,胡永江,李文广.基于改进哈里斯鹰算法的异构无人机协同侦察航迹规划[J].中国惯性技术学报, 2023, 31(7):717-723.