✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
摘要
本文提出了一种基于改进粒子群算法实现3-5-3机械臂多项式轨迹规划的方法。该方法首先建立了3-5-3机械臂的动力学模型,并对其进行简化。然后,使用改进的粒子群算法对多项式轨迹进行优化,以满足给定的轨迹约束条件。最后,通过仿真实验验证了该方法的有效性。
1. 引言
机械臂轨迹规划是机器人控制领域的重要研究内容之一。近年来,随着机器人技术的快速发展,对机械臂轨迹规划的要求也越来越高。多项式轨迹规划由于其简单易行、灵活高效等优点,被广泛应用于各种机械臂控制系统中。
3-5-3机械臂是一种常见的工业机器人,其具有运动灵活、操作方便等优点。本文将基于改进粒子群算法对3-5-3机械臂的多项式轨迹进行规划,以实现快速、平滑的运动。
2. 3-5-3机械臂动力学模型
3-5-3机械臂由三个旋转关节和三个伸缩关节组成,其动力学模型可以表示为:
3. 改进粒子群算法
粒子群算法是一种基于群体智能的优化算法,其原理是模拟鸟群觅食的行为。本文将对粒子群算法进行改进,以提高其优化效率。
改进的粒子群算法主要包括以下几个方面:
-
惯性权重调整:传统的粒子群算法中,惯性权重通常设置为一个固定值。本文将采用动态调整惯性权重的策略,以平衡全局搜索和局部搜索能力。
-
速度限制:传统的粒子群算法中,粒子速度没有限制。本文将对粒子速度进行限制,以防止粒子飞出搜索空间。
-
邻域拓扑结构优化:传统的粒子群算法中,粒子之间的信息交换通常采用全局拓扑结构。本文将采用自适应邻域拓扑结构,以提高算法的收敛速度。
4. 仿真实验
为了验证本文方法的有效性,进行了一系列仿真实验。仿真结果表明,基于改进粒子群算法的多项式轨迹规划方法能够有效地规划出满足约束条件的平滑轨迹,并能够提高机械臂的运动速度和精度。
5. 结论
本文提出了一种基于改进粒子群算法实现3-5-3机械臂多项式轨迹规划的方法。该方法能够有效地规划出满足约束条件的平滑轨迹,并能够提高机械臂的运动速度和精度。仿真实验结果验证了该方法的有效性。
⛳️ 运行结果
🔗 参考文献
[1] 黄超,茅健,马丽,等.基于改进粒子群算法的时间最优机械臂轨迹规划[J].上海工程技术大学学报, 2020(003):034.
[2] 黄超、茅健、马丽、向朝兴、王琛、阮大文.基于改进粒子群算法的时间最优机械臂轨迹规划[J].上海工程技术大学学报, 2020, 34(3):9.
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类