【机械臂】基于改进粒子群算法实现3-5-3机械臂多项式轨迹规划附matlab代码

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

物理应用             机器学习

🔥 内容介绍

摘要

本文提出了一种基于改进粒子群算法实现3-5-3机械臂多项式轨迹规划的方法。该方法首先建立了3-5-3机械臂的动力学模型,并对其进行简化。然后,使用改进的粒子群算法对多项式轨迹进行优化,以满足给定的轨迹约束条件。最后,通过仿真实验验证了该方法的有效性。

1. 引言

机械臂轨迹规划是机器人控制领域的重要研究内容之一。近年来,随着机器人技术的快速发展,对机械臂轨迹规划的要求也越来越高。多项式轨迹规划由于其简单易行、灵活高效等优点,被广泛应用于各种机械臂控制系统中。

3-5-3机械臂是一种常见的工业机器人,其具有运动灵活、操作方便等优点。本文将基于改进粒子群算法对3-5-3机械臂的多项式轨迹进行规划,以实现快速、平滑的运动。

2. 3-5-3机械臂动力学模型

3-5-3机械臂由三个旋转关节和三个伸缩关节组成,其动力学模型可以表示为:

3. 改进粒子群算法

粒子群算法是一种基于群体智能的优化算法,其原理是模拟鸟群觅食的行为。本文将对粒子群算法进行改进,以提高其优化效率。

改进的粒子群算法主要包括以下几个方面:

  • 惯性权重调整:传统的粒子群算法中,惯性权重通常设置为一个固定值。本文将采用动态调整惯性权重的策略,以平衡全局搜索和局部搜索能力。

  • 速度限制:传统的粒子群算法中,粒子速度没有限制。本文将对粒子速度进行限制,以防止粒子飞出搜索空间。

  • 邻域拓扑结构优化:传统的粒子群算法中,粒子之间的信息交换通常采用全局拓扑结构。本文将采用自适应邻域拓扑结构,以提高算法的收敛速度。

4. 仿真实验

为了验证本文方法的有效性,进行了一系列仿真实验。仿真结果表明,基于改进粒子群算法的多项式轨迹规划方法能够有效地规划出满足约束条件的平滑轨迹,并能够提高机械臂的运动速度和精度。

5. 结论

本文提出了一种基于改进粒子群算法实现3-5-3机械臂多项式轨迹规划的方法。该方法能够有效地规划出满足约束条件的平滑轨迹,并能够提高机械臂的运动速度和精度。仿真实验结果验证了该方法的有效性。

⛳️ 运行结果

🔗 参考文献

[1] 黄超,茅健,马丽,等.基于改进粒子群算法的时间最优机械臂轨迹规划[J].上海工程技术大学学报, 2020(003):034.

[2] 黄超、茅健、马丽、向朝兴、王琛、阮大文.基于改进粒子群算法的时间最优机械臂轨迹规划[J].上海工程技术大学学报, 2020, 34(3):9.

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值