✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
电池充电状态 (SOC) 是衡量电池剩余电量的关键指标,在电动汽车、储能系统等领域扮演着至关重要的角色。准确估计电池的 SOC 对系统安全、效率和性能至关重要。本文旨在探讨基于无迹卡尔曼滤波器 (UKF) 和扩展卡尔曼滤波器 (EKF) 的电池 SOC 估计方法。首先,概述了电池模型和 SOC 估计的原理,接着分别介绍了 UKF 和 EKF 的原理和实现步骤。最后,通过仿真实验对比分析了两种方法的性能,并探讨了它们在实际应用中的优缺点。
1. 引言
随着电动汽车、储能系统等应用的快速发展,对电池性能和管理的要求也越来越高。准确的 SOC 估计对于电池的充放电控制、剩余续航里程预测、安全管理等方面至关重要。传统方法通常采用库仑计方法,但其精度受温度、电流变化等因素影响较大。近年来,基于模型的 SOC 估计方法,如卡尔曼滤波方法,因其能够有效融合多源信息、提高估计精度而受到广泛关注。
2. 电池模型与 SOC 估计
电池模型是 SOC 估计的基础,它描述了电池电压、电流、温度等参数之间的关系。常用的电池模型包括等效电路模型 (ECM)、电化学模型等。ECM 由于其计算量较小,在实际应用中得到广泛应用。
SOC 定义为电池当前容量与电池总容量的比值,其估计方法主要有以下几种:
-
库仑计法: 通过积分电池电流来估计 SOC,受温度、电流变化等因素影响较大。
-
开路电压法: 利用电池开路电压与 SOC 的关系来估计 SOC,但需要较长时间的开路测量,不适合实时应用。
-
基于模型的 SOC 估计: 利用电池模型和滤波器融合测量数据和模型信息,实现对 SOC 的实时估计。
3. 扩展卡尔曼滤波器 (EKF)
EKF 是一种非线性滤波器,其原理是将非线性系统线性化,然后使用卡尔曼滤波器进行估计。EKF 的实现步骤如下:
-
系统状态方程和观测方程: 将电池模型转化为状态空间模型,包括状态方程和观测方程。
-
线性化: 在当前状态下,对非线性系统进行线性化,得到雅可比矩阵。
-
卡尔曼滤波: 利用线性化后的系统模型和卡尔曼滤波算法进行状态估计,得到 SOC 估计值。
4. 无迹卡尔曼滤波器 (UKF)
UKF 是一种基于无迹变换的非线性滤波器,其原理是利用无迹变换对非线性系统进行近似,从而避免了 EKF 中的线性化步骤。UKF 的实现步骤如下:
-
系统状态方程和观测方程: 与 EKF 相同。
-
无迹变换: 对状态向量进行无迹变换,得到一组 sigma 点。
-
预测和更新: 利用 sigma 点进行预测和更新,得到 SOC 估计值。
5. 仿真实验与结果分析
为了对比分析 UKF 和 EKF 在电池 SOC 估计中的性能,进行了仿真实验。实验采用了一个简单的 ECM 模型,并加入了随机噪声模拟实际环境。
结果表明,在相同噪声水平下,UKF 的估计精度明显高于 EKF。这是因为 UKF 避免了线性化步骤,更好地保留了非线性系统的特征,能够更加准确地进行状态估计。
6. 结论与展望
本文比较分析了基于 UKF 和 EKF 的电池 SOC 估计方法,结果表明 UKF 在精度上具有优势。然而,UKF 的计算量比 EKF 较大,需要权衡精度和计算效率。
未来的研究方向可以考虑以下几个方面:
-
开发更加精确的电池模型,以提高 SOC 估计精度。
-
结合机器学习方法,进一步提高 SOC 估计性能。
-
研究基于边缘计算的实时 SOC 估计方法,满足实际应用的需求。
总之,基于 UKF 和 EKF 的 SOC 估计方法为电池管理系统提供了有效的工具,为电动汽车、储能系统等领域的应用奠定了基础。
⛳️ 运行结果
🔗 参考文献
[1] 赵超,王延峰,林立.基于改进灰狼算法优化核极限学习机的锂电池动力电池荷电状态估计[J].信息与控制, 2021, 50(6):9.DOI:10.13976/j.cnki.xk.2021.0042.
[2] 战帅,冯世民.扩展卡尔曼滤波器和无迹卡尔曼滤波器的性能对比研究[J].信息通信, 2018(5):2.DOI:CNKI:SUN:HBYD.0.2018-05-016.
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🎁 私信完整代码和数据获取及论文数模仿真定制
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类