【信号去噪】基于Fblms算法单通道反馈有源噪声控制系统Matlab实现

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

🔥 内容介绍

1. 引言

噪声污染是现代社会面临的普遍问题,对人们的生活和工作造成严重的干扰。有源噪声控制(Active Noise Control, ANC)技术通过生成与噪声信号相位相反的声波进行抵消,有效地降低噪声水平,近年来在航空航天、汽车制造、家用电器等领域得到广泛应用。

FBLMS(Filtered-x Least Mean Squares)算法是一种常用的自适应滤波算法,在ANC系统中具有结构简单、运算量小、鲁棒性强等优点,因此成为ANC系统中广泛使用的算法之一。

本文将探讨基于FBLMS算法的单通道反馈式ANC系统的Matlab实现,并分析其在信号去噪方面的效果。

2. 系统原理

单通道反馈式ANC系统通常由三个主要部分组成:

  • 参考传感器: 采集原始噪声信号。

  • 自适应滤波器: 通过FBLMS算法根据参考信号和误差信号实时调整滤波器系数,生成与噪声信号相位相反的消噪信号。

  • 执行器: 播放消噪信号,抵消原始噪声信号。

FBLMS算法是一种自适应滤波算法,其核心思想是通过最小化误差信号的平方和来更新滤波器系数。其具体流程如下:

  1. 初始化滤波器系数。

  2. 采集参考信号和误差信号。

  3. 计算误差信号的梯度。

  4. 更新滤波器系数。

  5. 重复步骤2-4,直到滤波器系数收敛。

3. Matlab实现

Matlab是一种强大的数值计算和图形编程环境,能够方便地实现ANC系统。以下代码展示了基于FBLMS算法的单通道反馈式ANC系统的Matlab实现:

% 更新滤波器系数
w = w + mu*e*x;

% 生成消噪信号
y = -w'*x;

% 计算输出信号
out(i) = n(i+N) + y;
end

% 信号绘制
subplot(2, 1, 1);
plot(n(1:length(out)));
title('原始噪声信号');
subplot(2, 1, 2);
plot(out);
title('消噪后的信号');

4. 实验结果及分析

为了验证系统性能,我们使用一段随机噪声信号进行测试。实验结果显示,基于FBLMS算法的ANC系统能够有效地降低噪声水平,输出信号的噪声明显减小,证明了该系统的有效性。

图1展示了原始噪声信号和消噪后的信号。从图中可以看出,消噪后的信号噪声明显减小,证明了FBLMS算法在ANC系统中的有效性。

5. 总结

本文介绍了基于FBLMS算法的单通道反馈式ANC系统的Matlab实现,并进行了实验验证。实验结果表明,该系统能够有效地降低噪声水平,证明了其在信号去噪方面的应用价值。

6. 未来展望

未来可以进一步研究多通道ANC系统,提高ANC系统的消噪效果,并探索更先进的算法,例如自适应滤波器的鲁棒性问题,以提高系统的抗干扰能力,使其更加适用于实际应用场景。

⛳️ 运行结果

🔗 参考文献

[1] 袁军,孟祥胜,袁财政,等.一种基于FBFULMS算法的有源噪声控制系统的设计方法:202210891877[P][2024-07-25].

[2] 张丽,陈卫松,崔婷玉,等.一种基于变步长LMS算法的有源噪声控制系统:CN201610725164.X[P].CN106911320A[2024-07-25].

[3] 刘佳铭.多通道有源噪声控制快速算法的研究及应用[D].哈尔滨工业大学[2024-07-25].

🎈 部分理论引用网络文献,若有侵权联系博主删除
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值