✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
1. 引言
噪声污染是现代社会面临的普遍问题,对人们的生活和工作造成严重的干扰。有源噪声控制(Active Noise Control, ANC)技术通过生成与噪声信号相位相反的声波进行抵消,有效地降低噪声水平,近年来在航空航天、汽车制造、家用电器等领域得到广泛应用。
FBLMS(Filtered-x Least Mean Squares)算法是一种常用的自适应滤波算法,在ANC系统中具有结构简单、运算量小、鲁棒性强等优点,因此成为ANC系统中广泛使用的算法之一。
本文将探讨基于FBLMS算法的单通道反馈式ANC系统的Matlab实现,并分析其在信号去噪方面的效果。
2. 系统原理
单通道反馈式ANC系统通常由三个主要部分组成:
-
参考传感器: 采集原始噪声信号。
-
自适应滤波器: 通过FBLMS算法根据参考信号和误差信号实时调整滤波器系数,生成与噪声信号相位相反的消噪信号。
-
执行器: 播放消噪信号,抵消原始噪声信号。
FBLMS算法是一种自适应滤波算法,其核心思想是通过最小化误差信号的平方和来更新滤波器系数。其具体流程如下:
-
初始化滤波器系数。
-
采集参考信号和误差信号。
-
计算误差信号的梯度。
-
更新滤波器系数。
-
重复步骤2-4,直到滤波器系数收敛。
3. Matlab实现
Matlab是一种强大的数值计算和图形编程环境,能够方便地实现ANC系统。以下代码展示了基于FBLMS算法的单通道反馈式ANC系统的Matlab实现:
% 更新滤波器系数
w = w + mu*e*x;
% 生成消噪信号
y = -w'*x;
% 计算输出信号
out(i) = n(i+N) + y;
end
% 信号绘制
subplot(2, 1, 1);
plot(n(1:length(out)));
title('原始噪声信号');
subplot(2, 1, 2);
plot(out);
title('消噪后的信号');
4. 实验结果及分析
为了验证系统性能,我们使用一段随机噪声信号进行测试。实验结果显示,基于FBLMS算法的ANC系统能够有效地降低噪声水平,输出信号的噪声明显减小,证明了该系统的有效性。
图1展示了原始噪声信号和消噪后的信号。从图中可以看出,消噪后的信号噪声明显减小,证明了FBLMS算法在ANC系统中的有效性。
5. 总结
本文介绍了基于FBLMS算法的单通道反馈式ANC系统的Matlab实现,并进行了实验验证。实验结果表明,该系统能够有效地降低噪声水平,证明了其在信号去噪方面的应用价值。
6. 未来展望
未来可以进一步研究多通道ANC系统,提高ANC系统的消噪效果,并探索更先进的算法,例如自适应滤波器的鲁棒性问题,以提高系统的抗干扰能力,使其更加适用于实际应用场景。
⛳️ 运行结果
🔗 参考文献
[1] 袁军,孟祥胜,袁财政,等.一种基于FBFULMS算法的有源噪声控制系统的设计方法:202210891877[P][2024-07-25].
[2] 张丽,陈卫松,崔婷玉,等.一种基于变步长LMS算法的有源噪声控制系统:CN201610725164.X[P].CN106911320A[2024-07-25].
[3] 刘佳铭.多通道有源噪声控制快速算法的研究及应用[D].哈尔滨工业大学[2024-07-25].
🎈 部分理论引用网络文献,若有侵权联系博主删除
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类