✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
本演示包中,我们将对一系列一维瞬态和二维稳态案例进行热分析。所有案例研究都将进行有限差分 (FD) 推导(例如:推导出模板)。然后,通过 MATLAB® 中的内置 PDE 求解器或偏微分方程工具箱™ 来求解和验证有限差分公式。有关这些示例演示的学习益处的摘要,请参阅“概念和学习益处”部分。示例中涵盖的主题包括:
一维瞬态热传导:
-
求解一维 PDE 热方程
-
显式 FD 技术 - 前向时间中心空间 (FTCS)
-
隐式 FD 技术 - 标准
-
隐式 FD 技术 - Crank Nicolson
二维稳态热传导:
-
求解二维 PDE 拉普拉斯方程
-
用于在简单方形薄片上求解拉普拉斯方程的标准显式 FD 技术
-
二维稳态热传导:能量平衡方法
-
支持二维传导和对流的“真实”房屋保温设计案例研究
一、一维瞬态热传导
一维瞬态热传导是指在时间和一个空间维度上发生的热量传递。在这些案例中,我们使用有限差分方法来近似描述热量传递的偏微分方程 (PDE)。FD 方法将连续的 PDE 离散化为一系列代数方程,这些方程可以在计算机上求解。
1.1 显式 FD 技术 - 前向时间中心空间 (FTCS)
FTCS 方法是一种显式方法,这意味着当前时间步长的温度值直接取决于前一时间步长的温度值。这种方法简单易行,但也有其局限性,即稳定性要求较低,时间步长必须足够小以确保数值解的稳定性。
1.2 隐式 FD 技术 - 标准
标准隐式方法使用当前时间步长的温度值及其相邻节点的温度值来计算当前时间步长的温度值。这种方法比显式方法更稳定,可以允许更大的时间步长。
1.3 隐式 FD 技术 - Crank Nicolson
Crank Nicolson 方法是显式和隐式方法的组合。它使用当前时间步长的温度值及其相邻节点的温度值,并对前一时间步长和当前时间步长的温度值进行平均。这种方法比标准隐式方法更准确,但计算量也更大。
二、二维稳态热传导
二维稳态热传导是指在两个空间维度上达到稳定状态的热量传递。在这些案例中,我们使用有限差分方法来求解拉普拉斯方程,该方程描述了二维稳态热传导。
2.1 标准显式 FD 技术
该技术使用中心差分格式来近似拉普拉斯方程,并通过迭代方法来求解。这种方法简单易行,但稳定性要求较高,网格尺寸必须足够小以确保数值解的稳定性。
2.2 能量平衡方法
该方法通过考虑每个节点的能量平衡来求解热传导问题。该方法更直观,并且可以考虑各种边界条件和热源。
三、案例研究
本演示包中包含了多个案例研究,涵盖了一维瞬态热传导和二维稳态热传导的各种应用。例如,一个案例研究展示了使用显式 FTCS 方法来模拟棒状物体的瞬态热传导。另一个案例研究使用隐式 Crank Nicolson 方法来模拟墙壁的瞬态热传导。此外,还包含了对房屋保温设计进行热分析的案例研究,该案例研究使用了能量平衡方法来分析房屋结构的热量传递。
四、概念和学习益处
本演示包旨在提供有关使用有限差分方法进行热分析的基本理解。通过学习这些案例研究,学生可以了解以下概念:
-
有限差分方法的基本原理
-
显式和隐式 FD 技术的优缺点
-
不同 FD 技术在不同热传导问题中的应用
-
使用 MATLAB® 或偏微分方程工具箱™ 来求解热传导问题的实用技巧
⛳️ 运行结果
🔗 参考文献
[1]张森.汽车通风盘式制动器的流固热多物理场耦合分析与结构优化[D].山东科技大学[2024-07-30].
🎈 部分理论引用网络文献,若有侵权联系博主删除
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类