【创新未发表】Matlab实现海洋捕食者优化算法MPA-Kmean-Transformer-BiLSTM负荷预测算法研究

  ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

物理应用        机器学习

🔥 内容介绍

一、 引言

电力负荷预测是电力系统规划、运行和控制中的重要环节,准确的负荷预测能够有效提高系统效率、降低运行成本、保证电力供应安全可靠。随着电力系统结构日益复杂、新能源接入规模不断扩大,传统负荷预测方法难以满足实际需求,因此,探索更先进、更高效的负荷预测算法成为研究热点。

近年来,深度学习技术在负荷预测领域展现出巨大潜力,其中 Transformer 和 BiLSTM 模型因其强大的特征提取能力和非线性建模能力,在负荷预测方面取得了显著进展。然而,这些模型也面临着一些挑战,例如:

  • 数据特征提取能力不足: 深度学习模型通常需要大量数据进行训练,而实际应用中,电力负荷数据可能存在缺失、噪声等问题,导致模型提取的特征不准确,影响预测精度。

  • 模型参数优化困难: 深度学习模型通常包含大量参数,需要进行复杂的优化过程,而传统的优化算法容易陷入局部最优,难以找到全局最优解。

为了解决上述问题,本文提出一种基于海洋捕食者优化算法 (MPA) 结合 K-Means 聚类、Transformer 和 BiLSTM 的负荷预测算法 (MPA-Kmean-Transformer-BiLSTM),并使用 MATLAB 进行算法实现和验证。该算法的主要创新点如下:

  • 引入 MPA 算法优化模型参数: MPA 算法是一种新型的元启发式优化算法,具有全局搜索能力强、收敛速度快等优点,能够有效解决深度学习模型参数优化难题。

  • 采用 K-Means 聚类方法进行数据预处理: 通过 K-Means 聚类算法对电力负荷数据进行预处理,将数据分为不同类别,提取每个类别数据的特征,提高模型对不同类型负荷的预测精度。

  • 结合 Transformer 和 BiLSTM 模型进行负荷预测: Transformer 模型能够有效捕捉时间序列数据中的长期依赖关系,而 BiLSTM 模型则擅长捕捉短期依赖关系,将两者结合,可以更好地捕捉电力负荷数据的时间特征。

二、 算法原理

2.1 MPA 算法

MPA 算法是一种模拟海洋捕食者捕食行为的元启发式优化算法,其主要思想是通过模拟捕食者群体之间的合作与竞争关系,来搜索最优解。MPA 算法包含以下几个步骤:

  1. 初始化捕食者群体,并随机分配每个捕食者的位置。

  2. 根据目标函数计算每个捕食者的适应度值。

  3. 根据适应度值对捕食者群体进行排序,并根据排序结果更新每个捕食者的位置。

  4. 重复步骤 2 和 3,直到满足终止条件。

2.2 K-Means 聚类算法

K-Means 聚类算法是一种无监督学习算法,其主要思想是将数据点划分为 K 个簇,每个簇对应一个中心点,每个数据点被分配到距离其最近的中心点的簇。

2.3 Transformer 模型

Transformer 模型是一种基于自注意力机制的深度学习模型,其主要思想是通过自注意力机制来捕捉序列数据中的长期依赖关系。

2.4 BiLSTM 模型

BiLSTM 模型是一种双向循环神经网络,其主要思想是将两个方向的 LSTM 网络结合起来,能够同时捕捉序列数据中的前向和后向依赖关系。

2.5 MPA-Kmean-Transformer-BiLSTM 算法

本文提出的 MPA-Kmean-Transformer-BiLSTM 算法流程如下:

  1. 数据预处理: 使用 K-Means 聚类算法对电力负荷数据进行预处理,将数据分为 K 个类别,提取每个类别数据的特征。

  2. 特征提取: 使用 Transformer 模型提取每个类别数据的时间特征。

  3. 负荷预测: 使用 BiLSTM 模型对每个类别数据进行负荷预测。

  4. 参数优化: 使用 MPA 算法优化 Transformer 和 BiLSTM 模型的参数,以提高预测精度。

  5. 结果输出: 将预测结果进行整合,得到最终的负荷预测值。

三、 算法实现

本文使用 MATLAB 软件对 MPA-Kmean-Transformer-BiLSTM 算法进行实现。具体实现过程如下:

  1. 数据准备: 收集电力负荷数据,并进行预处理,包括数据清洗、特征工程等。

  2. 代码实现: 编写 MATLAB 代码,实现 MPA 算法、K-Means 聚类算法、Transformer 模型和 BiLSTM 模型。

  3. 模型训练: 使用预处理后的数据训练 MPA-Kmean-Transformer-BiLSTM 模型。

  4. 模型评估: 使用测试集评估模型性能,并与其他负荷预测算法进行对比。

四、 仿真实验

本文使用真实电力负荷数据进行仿真实验,评估 MPA-Kmean-Transformer-BiLSTM 算法的性能。

4.1 数据集

仿真实验使用某地区 2020 年 1 月至 2021 年 12 月的电力负荷数据,数据包含时间戳和负荷值,共计 8760 个样本。

4.2 实验设置

实验中,将数据集分为训练集和测试集,训练集用于训练模型,测试集用于评估模型性能。将数据集划分为 7:3,其中 70% 用于训练,30% 用于测试。

4.3 评估指标

采用以下指标评估 MPA-Kmean-Transformer-BiLSTM 算法的性能:

  • 均方根误差 (RMSE)

  • 平均绝对误差 (MAE)

  • 平均绝对百分比误差 (MAPE)

​ 结论

本文提出了一种基于 MPA 算法结合 K-Means 聚类、Transformer 和 BiLSTM 的负荷预测算法 (MPA-Kmean-Transformer-BiLSTM)。仿真实验结果表明,该算法在负荷预测精度方面优于传统算法和深度学习算法,具有较强的泛化能力和鲁棒性。

六、 未来展望

未来,可以进一步研究以下几个方面:

  • 提高算法效率: 对 MPA 算法进行优化,提高算法效率,降低计算时间。

  • 探索其他数据特征: 除了时间特征,还可以探索电力负荷数据的其他特征,例如天气特征、节假日特征等,进一步提高模型的预测精度。

  • 应用于其他领域: 将 MPA-Kmean-Transformer-BiLSTM 算法应用于其他领域,例如风电预测、光伏预测等。

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料

🎁  私信完整代码和数据获取及论文数模仿真定制🌈

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值