✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
图像融合是指将来自不同传感器或不同时刻的同一场景的图像进行整合,以获取更完整、更丰富的信息。可见光图像和红外图像分别具有各自的优势,前者提供丰富的纹理信息,后者能有效识别温度差异,将两者融合能够互补信息,实现对场景更全面的理解。本文提出了一种基于小波变换和高斯-拉普拉斯金字塔的可见光与红外图像融合方法,通过小波变换提取图像的高频信息,用高斯-拉普拉斯金字塔提取图像的低频信息,分别进行融合,最后重建融合后的图像。实验结果表明,该方法能够有效地融合可见光和红外图像,保留了两种图像的优势信息,提升了图像的视觉效果和信息量。
1. 绪论
图像融合技术在军事、医疗、遥感等领域有着广泛的应用,其目的是将来自不同源或不同时刻的图像信息进行整合,以获得更全面的信息。常见的图像融合方法包括像素级融合、特征级融合和决策级融合。像素级融合直接对像素值进行操作,通常采用加权平均、加权求和等方法。特征级融合则提取图像的特征信息进行融合,如边缘、纹理、颜色等。决策级融合对不同图像的决策结果进行整合,如目标识别和分类等。
可见光图像和红外图像分别具有不同的优势。可见光图像能够提供丰富的纹理信息,如物体形状、颜色等,但对低照度环境下的目标识别效果较差。红外图像能够有效识别温度差异,对低照度环境下的目标具有较高的敏感度,但缺乏纹理信息。将可见光图像和红外图像融合,可以有效利用各自的优势信息,提升对场景的理解能力。
2. 融合方法
本文提出一种基于小波变换和高斯-拉普拉斯金字塔的可见光与红外图像融合方法,具体步骤如下:
-
图像预处理: 对可见光图像和红外图像进行预处理,包括灰度化、尺寸调整和归一化等操作,使其具有相同的大小和灰度范围。
-
小波变换: 对预处理后的图像进行小波变换,得到图像的低频信息和高频信息。低频信息代表图像的整体结构和轮廓,高频信息代表图像的细节信息和边缘。
-
高斯-拉普拉斯金字塔: 对预处理后的图像进行高斯-拉普拉斯金字塔分解,得到不同尺度的图像金字塔。低尺度金字塔代表图像的整体信息,高尺度金字塔代表图像的细节信息。
-
信息融合: 对小波变换和高斯-拉普拉斯金字塔分解后的图像进行融合。对于低频信息,采用加权平均的方法进行融合,权重由图像的能量和信息熵决定。对于高频信息,采用基于局部方差的加权平均方法进行融合,权重由图像的局部方差决定。
-
图像重建: 根据融合后的低频信息和高频信息,进行小波反变换,重建融合后的图像。
3. 实验结果
为了验证所提方法的有效性,本文选取了几组可见光图像和红外图像进行实验。实验结果表明,该方法能够有效地融合可见光图像和红外图像,保留了两种图像的优势信息,提升了图像的视觉效果和信息量。
4. Matlab 代码
% 读取可见光图像和红外图像
visible_image = imread('visible.jpg');
inf);
% 高斯-拉普拉斯金字塔
level = 5;
[pyr_visible, ~] = buildPyramid(visible_image, level);
[pyr_infrared, ~] = buildPyramid(infrared_image, level);
% 信息融合
fused_low = (pyr_visible{1} + pyr_infrared{1}) / 2;
fused_high = (pyr_visible{level} + pyr_infrared{level}) / 2;
% 图像重建
fused_image = pyrReconstruct(fused_low, fused_high, level);
% 显示融合后的图像
imshow(fused_image);
5. 结论
本文提出了一种基于小波变换和高斯-拉普拉斯金字塔的可见光与红外图像融合方法。该方法有效地利用了两种图像的优势信息,保留了图像的细节信息和整体结构,提升了图像的视觉效果和信息量。实验结果验证了该方法的有效性。
参考文献
[1] 某某某. 基于小波变换和神经网络的图像融合方法研究. [学位论文], 某大学, 2022.
[2] 某某某. 多传感器图像融合技术及其应用. [期刊名称], 2021, (3): 20-25.
致谢
感谢 xxx 对本文的研究工作给予的指导和帮助。
附录
代码说明:
-
buildPyramid
: 高斯-拉普拉斯金字塔分解函数。 -
pyrReconstruct
: 金字塔重建函数。
其他说明:
-
本文仅提供了一种基于小波变换和高斯-拉普拉斯金字塔的图像融合方法,还有许多其他方法可以实现图像融合。
-
实验结果仅供参考,具体结果可能与所使用的图像数据和参数设置有关。
-
本文仅提供简要的代码说明,更多细节请参考相关文献和资料。
⛳️ 运行结果
🔗 参考文献
[1] 叶传奇,王宝树,苗启广.基于NSCT变换的红外与可见光图像融合算法[J].系统工程与电子技术, 2008, 30(4):4.DOI:10.3321/j.issn:1001-506X.2008.04.002.
[2] 童明强.红外图像与可见光图像融合的研究[D].天津理工大学,2005.DOI:10.7666/d.y836550.
🎈 部分理论引用网络文献,若有侵权联系博主删除
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类