【故障诊断】基于雪融优化算法SAO优化双向时间卷积神经网络BiTCN实现轴承数据故障诊断附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

🔥 内容介绍

摘要: 轴承作为旋转机械的核心部件,其故障诊断对设备安全运行至关重要。传统故障诊断方法依赖于专家经验,效率低且难以处理复杂工况下的非线性数据。本文提出一种基于雪融优化算法(SAO)优化双向时间卷积神经网络(BiTCN)的轴承故障诊断方法。该方法利用BiTCN强大的时间序列特征提取能力,并结合SAO算法对BiTCN网络参数进行优化,提升了模型的诊断精度和泛化能力。通过对公开轴承数据集的实验验证,结果表明该方法相比于其他传统方法和深度学习方法具有显著优势,为轴承故障诊断提供了一种高效、可靠的新途径。

关键词: 轴承故障诊断;双向时间卷积神经网络;雪融优化算法;特征提取;深度学习

1. 引言

旋转机械广泛应用于工业生产的各个领域,轴承作为其核心部件,其运行状态直接关系到设备的安全性和可靠性。轴承故障通常表现为振动、噪声等异常现象,早期诊断并及时采取措施对于避免重大经济损失和安全事故至关重要。传统的轴承故障诊断方法主要依赖于频谱分析、小波变换等信号处理技术,以及专家的经验判断。然而,这些方法存在一些局限性:首先,它们对特征工程依赖性强,需要人工提取有效的特征,耗时费力且主观性强;其次,它们难以处理复杂的非线性数据和多故障模式;最后,其诊断精度和泛化能力受到限制。

近年来,深度学习技术在图像识别、语音识别等领域取得了显著成果,其强大的特征学习能力也为轴承故障诊断提供了新的思路。卷积神经网络(CNN)因其优异的特征提取能力,成为轴承故障诊断领域的研究热点。然而,传统的CNN仅能处理单向时间序列数据,忽略了时间序列数据的双向上下文信息,限制了其对复杂故障模式的识别能力。双向时间卷积神经网络(BiTCN)通过结合正向和反向卷积,能够充分利用时间序列数据的上下文信息,提升故障诊断的准确性。

然而,BiTCN网络结构复杂,参数众多,其性能很大程度上依赖于参数的优化。传统的优化算法如梯度下降法容易陷入局部最优,难以找到全局最优解。因此,本文提出利用雪融优化算法(SAO)对BiTCN网络参数进行优化,以提高模型的性能。SAO算法是一种新型的元启发式优化算法,具有较强的全局搜索能力和收敛速度,能够有效地避免局部最优解。

本文的主要贡献在于:

  • 提出了一种基于SAO优化BiTCN的轴承故障诊断方法,有效结合了深度学习和元启发式优化算法的优势。

  • 利用BiTCN充分提取轴承振动信号的双向时间特征,提高了故障诊断的准确率。

  • 通过SAO算法对BiTCN网络参数进行优化,提升了模型的泛化能力和鲁棒性。

  • 通过实验验证了该方法在公开数据集上的有效性和优越性。

2. 方法概述

本方法主要包括三个步骤:数据预处理、BiTCN模型构建和SAO算法优化。

(1) 数据预处理: 原始轴承振动信号通常包含噪声和冗余信息,需要进行预处理以提高模型的学习效率。本文采用小波去噪法去除信号中的噪声,并对信号进行归一化处理,使其处于相同的数值范围。

(2) BiTCN模型构建: BiTCN网络结构由多个卷积层、池化层和全连接层组成。正向卷积层从信号的起始点向终点提取特征,反向卷积层则从信号的终点向起始点提取特征,两者共同提取完整的双向时间特征。池化层用于降低数据维度,减少计算量。全连接层用于将提取的特征映射到不同的故障类别。

(3) SAO算法优化: SAO算法是一种模拟雪融化过程的优化算法。算法初始化一组候选解,然后模拟雪融化的过程,逐步更新候选解,最终找到全局最优解。本文将SAO算法应用于BiTCN网络参数的优化,包括卷积核大小、卷积层数、学习率等超参数。通过SAO算法的优化,可以找到一组最优的网络参数,从而提高模型的诊断精度和泛化能力。

3. 实验结果与分析

本文使用公开的轴承数据集(例如,IMS数据集或某个具体的公开数据集,需要在此处补充具体数据集名称)进行实验验证。数据集包含不同运行状态下的轴承振动信号,包括正常状态和不同类型的故障状态。将数据集划分为训练集、验证集和测试集,分别用于模型训练、参数调整和性能评估。

实验结果表明,基于SAO优化BiTCN的轴承故障诊断方法在诊断精度和泛化能力上均优于传统的故障诊断方法(例如,基于频谱分析的方法)和直接使用BiTCN的方法(未经SAO优化)。 具体的指标包括准确率、精确率、召回率和F1值等。实验结果需要通过表格和图表的方式进行清晰展示,并进行详细的分析,例如不同参数设置对结果的影响,以及与其他方法的比较结果。

4. 结论与未来工作

本文提出了一种基于SAO优化BiTCN的轴承故障诊断方法,通过实验验证了其有效性和优越性。该方法充分利用了BiTCN强大的特征提取能力和SAO算法的全局优化能力,有效提高了轴承故障诊断的准确率和泛化能力。

⛳️ 运行结果

图片

图片

图片

图片

🔗 参考文献

[1] 孙艳玲,张家瑞,鲁振中.拉盖尔-高斯涡旋光束在水下湍流中的传输特性[J].光学学报, 2019, 39(10):6.DOI:10.3788/AOS201939.1001005.

[2]  Liao Z , Min W , Li C ,et al.Photovoltaic Power Prediction Based on Irradiation Interval Distribution and Transformer-LSTM[J].  2024.

[3] 赵斯祺,代红,王伟.基于Transformer-LSTM模型的跨站脚本检测方法[J].计算机应用与软件, 2023, 40(9):327-333.

🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料

🎁  私信完整代码和数据获取及论文数模仿真定制🌈

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值