✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知,求助可私信。
🔥 内容介绍
摘要: 本文针对无人船轨迹跟踪控制问题,提出了一种基于神经网络自适应滑模控制的方案。该方案结合了神经网络的逼近能力和滑模控制的鲁棒性,有效解决了传统滑模控制中存在的抖振问题和对模型参数依赖性强的问题。通过神经网络在线逼近系统不确定性和外部干扰,并结合自适应机制调整滑模控制参数,最终实现了无人船对预设轨迹的高精度跟踪。本文详细介绍了控制器的设计过程,并通过仿真实验验证了该方法的有效性和优越性。
关键词: 无人船;轨迹跟踪;神经网络;自适应滑模控制;鲁棒控制
1. 引言
随着海洋开发和信息技术的快速发展,无人船在海洋探测、环境监测、水下作业等领域发挥着越来越重要的作用。精确的轨迹跟踪控制是无人船自主航行的关键技术之一。然而,无人船的运动动力学模型复杂,存在着模型参数不确定性、外部干扰等诸多挑战,传统的控制方法难以满足高精度轨迹跟踪的要求。
近年来,滑模控制因其对模型不确定性和外部扰动具有鲁棒性而受到广泛关注。然而,传统的滑模控制存在着抖振现象,影响控制精度和系统稳定性。为了解决这个问题,研究人员提出了许多改进算法,如自适应滑模控制、模糊滑模控制等。其中,自适应滑模控制通过在线调整滑模控制参数,有效抑制了抖振,提高了控制精度。然而,自适应滑模控制仍然需要对系统模型有一定的了解,才能设计合适的自适应律。
神经网络具有强大的非线性逼近能力,可以有效逼近系统的不确定性和外部干扰。将神经网络与滑模控制相结合,可以充分发挥两者的优势,提高控制系统的性能。本文提出了一种基于神经网络自适应滑模控制的无人船轨迹跟踪方法,该方法利用神经网络在线逼近系统不确定性和外部干扰,并结合自适应机制调整滑模控制参数,有效解决了传统滑模控制的不足,实现了无人船对预设轨迹的高精度跟踪。
2. 无人船运动模型
3. 基于神经网络自适应滑模控制器的设计
4. 仿真实验与结果分析
为了验证所提控制器的有效性,本文进行了仿真实验。仿真实验中,无人船的运动参数设置为实际无人船的参数。预设轨迹为一个圆形轨迹。仿真结果表明,基于神经网络自适应滑模控制的无人船轨迹跟踪系统能够实现对预设轨迹的高精度跟踪,并且有效地抑制了抖振现象。与传统的滑模控制相比,该方法具有更高的跟踪精度和鲁棒性。
5. 结论
本文提出了一种基于神经网络自适应滑模控制的无人船轨迹跟踪方法,该方法结合了神经网络的逼近能力和自适应滑模控制的鲁棒性,有效解决了传统滑模控制中存在的抖振问题和对模型参数依赖性强的问题。仿真实验结果验证了该方法的有效性和优越性。未来的研究工作将集中在如何进一步提高控制器的鲁棒性和自适应能力,以及如何在实际应用中进行实验验证。
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🎁 私信完整代码和数据获取及论文数模仿真定制
🌿 往期回顾可以关注主页,点击搜索
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇