【信号去噪】基于RLS和LMS局部放电在线监测中的自适应噪声对消附Matlab代码和报告

 ✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知,求助可私信。

🔥 内容介绍​

变压器的绝缘材料中存在着气隙和油隙,当这些地方的电场强度达到一定程度时,它们将被击穿而发生局部放电。局部放电是导致变压器绝缘老化和损坏的主要原因。局部放电在线监测是大型设备故障诊断的重要组成部分,是反映其早期绝缘故障的重要手段之一。因此,局部放电在线监测被越来越多的人所重视。人们根据局部放电产生的电、光 、热 、声及一些化学现象,提出不同的监测方法,其中电测法是迄今为止局部放电领域最活跃、应用最广泛的一种方法。电力设备内部缺陷的早期故障局部放电信号很微弱,往往处于强大噪声源的包围之中,因此噪声的抑制是电力设备进行局部放电在线监测时首先要解决的问题,而周期窄带干扰在频域中表现为窄带离散谱线的周期性干扰,在时域中严重时甚至将放电信号完全淹没。实现在线监测的关键问题是如何从强干扰中提取出局部放电信号,电测法中一般用自适应滤波方法抑制连续周期性干扰资。自适应算法无须预先知道窄带干扰的频率,对周期性窄带干扰有较好的效果

在自适应噪声对消中,如果找到合适的信号和药抵消的噪声信号相关,就可以把这个信号作为参考信号,则在自适应噪声抵消系统的输出端就可以得到比较纯净的消除干扰的信号。局部放电信号为宽带信号,而周期性干扰为窄带信号,这样经过接收延迟之后,可以去除宽带信号的干扰性,经对消后得到局部放电信号。因此,对消该周期干扰信号可以使用自适应周期性干扰抵消系统。

二.原理框图如下

原理框图如下图1,原输入信号为宽带信号和周期信号干扰的组合,局部放电信号为宽带信号,而周期性干扰为窄带信号。这个信号经过一定的延时,作为自适应噪声对消的参考信号。由于延时,使得带宽带信号由相关变为不相关,而由于干扰时周期的,相关性也是周期的,经过延时后的相关性是不会变化的。

在此系统中,局部放电信号为非平稳信号,选用哪一种自适应算法是关键。不同的自适应算法的跟踪能力、收敛性,最小均方误差是不同的。再次,我分别用LMS和RLS两种不同的算法检测局部放电信号。

⛳️ 运行结果

🔗 参考文献

[1]刘红梅.自适应噪声对消滤波器的仿真及其FPGA实现[D].湖南大学[2025-01-29].DOI:CNKI:CDMD:2.1013.169814.

🎈 部分理论引用网络文献,若有侵权联系博主删除

👇 关注我领取海量matlab电子书和数学建模资料

🎁  私信完整代码和数据获取及论文数模仿真定制

🌿 往期回顾可以关注主页,点击搜索

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

### 光纤通信中的信号算法 在光纤通信领域,信号是一个重要的环节,尤其对于提高数据传输质量可靠性而言。针对不同类型的噪声应用场景,多种有效的算法被广泛研究应用。 #### 自适应噪声对消技术 一种常见的方法是采用自适应噪声对消技术,该技术特别适用于处理宽带信号与周期性干扰混合的情况。具体来说,当原输入信号包含了宽带的局部放电信号以及周期性的窄带干扰时,可以通过引入一定量的时间延迟来构建参考信号[^1]。这种做法可以使原本相关的宽带成分变得不再相关,而周期性的干扰则保持其原有的相关特性不变。随后,利用最小均方误差(LMS)或递归最小二乘(RLS)等自适应滤波算法除这些不需要的部分,从而达到净化目标信号的目的[^3]。 #### 基于滤波器组的方法 另一种常用的技术是基于各种类型滤波器的设计来进行信号清理工作。例如,在语音方面,低通、高通、带通及带阻四种基本形式的滤波器经常联合起来使用以应对不同类型的声音污染问题[^2]。虽然这里提到的是语音场景下的例子,但在光纤通信环境中同样适用——通过精心设计并组合不同的滤波器参数,可以针对性地消除特定频率范围内的杂音,保护有用的信息不受损害。 #### 高级调制方案优化 值得注意的是,除了传统的过滤手段外,改进调制策略本身也可以间接起到增强抗能力的作用。比如,在面对非线性失真带来的挑战时,自适应码本OFDM (ACO-OFDM) 提供了一种创新解决方案。它不仅继承了标准OFDM的优点如对抗多路径传播的能力强等特点,而且还能动态调整内部结构以减轻因功率放大等因素引起的畸变现象,进而改善整体链路的质量表现[^5]。 综上所述,无论是采取经典的自适应滤波还是探索新型编码机制,都是为了更好地服务于现代复杂环境下稳定可靠的光通讯需求。 ```matlab % MATLAB代码示例:简单的LMS自适应滤波器实现 function y = lms_filter(x, d, mu, N) % 初始化权重向量w w = zeros(N, 1); for n = N:length(x) u = x(n:-1:n-N+1)'; e = d(n) - sum(w .* u); % 计算误差e w = w + 2 * mu * e * u'; % 更新权值 y(n) = sum(w .* u); % 输出估计值y end end ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值