✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知,求助可私信。
🔥 内容介绍
变压器的绝缘材料中存在着气隙和油隙,当这些地方的电场强度达到一定程度时,它们将被击穿而发生局部放电。局部放电是导致变压器绝缘老化和损坏的主要原因。局部放电在线监测是大型设备故障诊断的重要组成部分,是反映其早期绝缘故障的重要手段之一。因此,局部放电在线监测被越来越多的人所重视。人们根据局部放电产生的电、光 、热 、声及一些化学现象,提出不同的监测方法,其中电测法是迄今为止局部放电领域最活跃、应用最广泛的一种方法。电力设备内部缺陷的早期故障局部放电信号很微弱,往往处于强大噪声源的包围之中,因此噪声的抑制是电力设备进行局部放电在线监测时首先要解决的问题,而周期窄带干扰在频域中表现为窄带离散谱线的周期性干扰,在时域中严重时甚至将放电信号完全淹没。实现在线监测的关键问题是如何从强干扰中提取出局部放电信号,电测法中一般用自适应滤波方法抑制连续周期性干扰资。自适应算法无须预先知道窄带干扰的频率,对周期性窄带干扰有较好的效果
在自适应噪声对消中,如果找到合适的信号和药抵消的噪声信号相关,就可以把这个信号作为参考信号,则在自适应噪声抵消系统的输出端就可以得到比较纯净的消除干扰的信号。局部放电信号为宽带信号,而周期性干扰为窄带信号,这样经过接收延迟之后,可以去除宽带信号的干扰性,经对消后得到局部放电信号。因此,对消该周期干扰信号可以使用自适应周期性干扰抵消系统。
二.原理框图如下
原理框图如下图1,原输入信号为宽带信号和周期信号干扰的组合,局部放电信号为宽带信号,而周期性干扰为窄带信号。这个信号经过一定的延时,作为自适应噪声对消的参考信号。由于延时,使得带宽带信号由相关变为不相关,而由于干扰时周期的,相关性也是周期的,经过延时后的相关性是不会变化的。
在此系统中,局部放电信号为非平稳信号,选用哪一种自适应算法是关键。不同的自适应算法的跟踪能力、收敛性,最小均方误差是不同的。再次,我分别用LMS和RLS两种不同的算法检测局部放电信号。
⛳️ 运行结果
🔗 参考文献
[1]刘红梅.自适应噪声对消滤波器的仿真及其FPGA实现[D].湖南大学[2025-01-29].DOI:CNKI:CDMD:2.1013.169814.
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🎁 私信完整代码和数据获取及论文数模仿真定制
🌿 往期回顾可以关注主页,点击搜索
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇