【无人艇】基于PID实现无人艇航迹规划附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

随着科技的飞速发展,无人艇(Unmanned Surface Vehicle, USV)作为水面无人平台,因其具备自主导航、环境感知、任务执行等能力,在海洋勘测、水质监测、搜救打捞、军事防御等领域展现出巨大的应用潜力。航迹跟踪是无人艇自主导航的关键技术之一,其目标是控制无人艇精确地沿着预设的期望航迹行驶,即使在复杂的海况或受外部干扰(如风浪、水流)的情况下,也能保持高精度的航向和位置。传统的航迹跟踪方法多样,包括直线跟踪、曲线跟踪等,而如何实现高精度、鲁棒性强的航迹跟踪一直是无人艇领域的研究热点。

PID(比例-积分-微分)控制器作为一种经典的控制算法,因其结构简单、易于实现、适用范围广等优点,在工业控制领域得到了广泛应用。将其应用于无人艇的航迹跟踪控制,可以利用PID控制器根据无人艇当前状态与期望航迹之间的偏差,实时调整无人艇的舵角和推进力,从而实现对期望航迹的精确跟踪。本文将深入探讨基于PID控制器实现无人艇航迹跟踪的原理、方法以及相关问题,旨在为无人艇自主导航技术的进一步发展提供理论和实践参考。

第一章:无人艇航迹跟踪问题概述

无人艇航迹跟踪的核心问题在于如何根据无人艇当前的位置和姿态信息,生成控制指令(通常是舵角和推进力),使得无人艇能够沿着预定的期望航迹行驶。期望航迹可以是直线、圆弧、或由一系列离散点组成的复杂曲线。理想情况下,无人艇应该精确地位于期望航迹上,并保持与期望航迹一致的速度和航向。然而,在实际应用中,由于环境扰动、传感器误差、执行器延迟等因素的影响,无人艇会偏离期望航迹,因此需要一个有效的控制策略来修正偏差。

航迹跟踪问题的数学描述通常涉及到无人艇的运动学和动力学模型。无人艇的运动学模型描述了其位置和姿态随速度和角速度的变化关系,而动力学模型描述了作用在无人艇上的力和力矩与其加速度和角加速度之间的关系。通过建立精确的无人艇模型,可以更好地理解无人艇的运动特性,为控制器的设计提供基础。

航迹跟踪性能的衡量指标通常包括:

  • 跟踪精度:

     无人艇实际航迹与期望航迹之间的偏差大小。

  • 鲁棒性:

     控制系统抵抗外部干扰的能力。

  • 响应速度:

     无人艇从偏离期望航迹到重新回到期望航迹所需的时间。

  • 稳定性:

     控制系统在受到扰动后能够恢复到平衡状态的能力。

第二章:PID控制器原理

PID控制器是一种线性控制器,其输出由比例项(P)、积分项(I)和微分项(D)三个部分组成,通过调整这三个部分的权重(即比例系数Kp、积分系数Ki、微分系数Kd),可以实现对被控对象的精确控制。

PID控制器的数学表达式通常为:

𝑢(𝑡)=𝐾𝑝𝑒(𝑡)+𝐾𝑖∫0𝑡𝑒(𝜏)𝑑𝜏+𝐾𝑑𝑑𝑒(𝑡)𝑑𝑡u(t)=Kpe(t)+Ki∫0te(τ)dτ+Kddtde(t)

其中:

  • 𝑢(𝑡)u(t)

     为控制器的输出,对于无人艇航迹跟踪而言,通常是舵角或推进力指令。

  • 𝑒(𝑡)e(t)

     为误差信号,即当前状态与期望状态之间的偏差。在航迹跟踪中,误差通常包括横向偏差和航向偏差。

  • 𝐾𝑝Kp

     为比例系数。比例项反映了当前误差的大小,比例系数越大,控制器响应越快,但可能导致超调。

  • 𝐾𝑖Ki

     为积分系数。积分项用于消除稳态误差,积分系数越大,消除稳态误差的能力越强,但可能导致系统振荡。

  • 𝐾𝑑Kd

     为微分系数。微分项反映了误差变化的趋势,可以预测误差的变化,有助于抑制超调和提高系统的稳定性。

PID控制器的三个部分各自具有不同的作用:

  • 比例项 (P):

     立即响应误差,使得控制器的输出与误差成比例。

  • 积分项 (I):

     消除系统的稳态误差,使得系统最终能够精确地达到设定值。

  • 微分项 (D):

     预测误差的变化趋势,抑制超调,提高系统的动态响应性能。

通过合理地整定PID控制器的三个参数,可以使得控制系统达到理想的控制效果。PID控制器的优点在于其结构简单、易于理解和实现,对于许多线性或近似线性的系统具有良好的控制效果。然而,对于非线性、时变或存在较大延迟的系统,传统的PID控制器可能难以达到最佳的控制效果,此时可能需要结合其他控制策略或采用更高级的PID控制算法(如自适应PID、模糊PID等)。

第三章:基于PID的无人艇航迹跟踪方法

基于PID控制器实现无人艇航迹跟踪通常采用以下思路:将航迹跟踪问题分解为横向控制和航向控制两个子问题,并为每个子问题设计相应的PID控制器。

3.1 误差定义

在基于PID的无人艇航迹跟踪中,需要定义合适的误差信号来反映无人艇与期望航迹之间的偏差。常用的误差定义包括:

  • 横向偏差 (𝑒𝑙𝑎𝑡elat):

     无人艇当前位置与期望航迹上最近点之间的垂直距离。这个误差反映了无人艇与航迹的远近程度。

  • 航向偏差 (𝑒𝑝𝑠𝑖epsi):

     无人艇当前航向与期望航迹上最近点对应航向之间的差值。这个误差反映了无人艇是否面向期望航迹的方向。

3.2 控制结构

常见的基于PID的无人艇航迹跟踪控制结构如图所示:

 

css

[期望航迹] --> [期望位置/航向] --> [误差计算模块] --> [PID控制器] --> [控制指令 (舵角/推进力)] --> [无人艇模型] --> [无人艇实际位置/航向] --> [传感器] --> [误差计算模块]

在这个结构中,期望航迹作为输入,通过期望位置和航向生成模块计算出无人艇在期望航迹上应该达到的位置和航向。然后,通过误差计算模块计算出无人艇当前实际位置/航向与期望位置/航向之间的误差。这些误差信号被输入到PID控制器中,PID控制器根据这些误差信号输出控制指令(舵角和推进力)。这些控制指令作用于无人艇的执行器,使得无人艇能够调整姿态和速度,从而减小误差,实现航迹跟踪。

3.3 PID控制器设计

通常采用两个独立的PID控制器分别控制无人艇的横向运动和航向运动:

  • 横向PID控制器:

     输入为横向偏差 𝑒𝑙𝑎𝑡elat,输出为期望的横向控制力或控制速度。为了实现航迹跟踪,横向PID控制器通常需要与航向控制相结合,例如,将横向偏差作为期望航向角的调整量。

  • 航向PID控制器:

     输入为航向偏差 𝑒𝑝𝑠𝑖epsi,输出为舵角指令。航向PID控制器根据当前航向与期望航向的偏差,调整舵角,使得无人艇的航向朝着期望航向方向变化。

具体的控制策略可以有多种,例如:

  • 基于横向偏差和航向偏差的控制:

     同时考虑横向偏差和航向偏差,利用PID控制器输出期望的舵角和/或推进力。例如,可以使用横向偏差来调整期望的航向,然后使用航向PID控制器来控制舵角。

  • 纯航向控制:

     只考虑航向偏差,通过控制舵角来调整航向,间接地实现航迹跟踪。这种方法在航迹接近直线时效果较好,但对于弯曲航迹或存在较大横向偏差时,可能无法保证跟踪精度。

3.4 PID参数整定

PID控制器的性能在很大程度上取决于其参数的整定。合适的PID参数能够使得系统响应快速、稳定且超调小。常用的PID参数整定方法包括:

  • 经验法:

     根据工程经验和对系统的理解,手动调整PID参数。这种方法简单易行,但需要反复试验和调整,效率较低。

  • 齐格勒-尼科尔斯方法:

     一种基于开环或闭环响应曲线的参数整定方法。这种方法相对系统化,但对于某些系统可能不适用。

  • 智能优化算法:

     利用遗传算法、粒子群优化等智能算法,通过迭代优化寻找最优的PID参数组合。这种方法可以获得较好的参数,但计算量较大。

  • 模型参考自适应控制 (MRAC):

     利用参考模型来指导PID参数的调整,使得闭环系统的响应接近参考模型的响应。

对于无人艇这种复杂的非线性系统,通常需要结合实际测试和仿真结果进行PID参数的整定,以获得最佳的控制效果。

第四章:基于PID的无人艇航迹跟踪实现步骤

基于PID实现无人艇航迹跟踪的典型步骤如下:

  1. 航迹生成:

     根据任务需求,规划期望的无人艇航迹。航迹可以由一系列离散的航路点组成,或者通过数学函数描述的连续曲线。

  2. 无人艇建模:

     建立无人艇的运动学和动力学模型。这些模型有助于理解无人艇的运动特性,为控制器设计和仿真提供基础。

  3. 传感器数据获取:

     通过无人艇上的传感器(如GPS、惯性测量单元IMU、电子罗盘等)获取无人艇的当前位置、速度、航向等状态信息。

  4. 误差计算:

     根据无人艇的当前状态和期望航迹,计算横向偏差和航向偏差。

  5. PID控制器设计:

     设计横向和航向PID控制器,并确定合适的控制策略。

  6. PID参数整定:

     通过仿真或实际测试,整定PID控制器的参数。

  7. 控制指令生成:

     PID控制器根据误差信号输出控制指令(舵角和推进力)。

  8. 控制指令执行:

     无人艇的执行器(舵机和推进器)根据控制指令调整舵角和推进力,使得无人艇朝着期望方向运动。

  9. 循环迭代:

     不断重复步骤3-8,实时跟踪期望航迹。

第五章:基于PID的无人艇航迹跟踪存在的问题与挑战

尽管基于PID控制器的无人艇航迹跟踪方法具有结构简单、易于实现的优点,但在实际应用中也面临一些问题和挑战:

  • 非线性问题:

     无人艇的运动模型通常是非线性的,而传统的PID控制器是线性控制器,对于非线性系统,其控制性能可能受到限制。

  • 时变性问题:

     海洋环境复杂多变,风浪、水流等外部干扰具有时变性,会影响无人艇的运动。传统的PID控制器对时变系统适应性较差。

  • 参数整定困难:

     对于复杂的无人艇系统,PID参数的整定是一项具有挑战性的工作,需要反复试验和调整。不合适的参数可能导致控制性能下降甚至系统不稳定。

  • 鲁棒性问题:

     在存在较大外部干扰或传感器噪声的情况下,基于PID的航迹跟踪方法可能鲁棒性不足,容易产生较大的跟踪误差。

  • 欠驱动无人艇控制:

     对于只有推进器没有舵的欠驱动无人艇,只能通过调整推进器的推力差来实现航向控制,控制难度更大。

第六章:基于PID的无人艇航迹跟踪改进方法

为了提高基于PID的无人艇航迹跟踪性能,可以采用以下改进方法:

  • 自适应PID:

     根据系统的状态变化,实时调整PID参数,提高对时变系统的适应能力。

  • 模糊PID:

     将模糊逻辑与PID控制相结合,利用模糊规则库来描述PID参数与误差之间的关系,提高对非线性系统的控制能力。

  • 前馈控制:

     利用无人艇模型或期望航迹信息,提前预测所需的控制量,与反馈控制相结合,提高系统的响应速度和跟踪精度。

  • 鲁棒PID:

     设计鲁棒性更好的PID控制器,使其对外部干扰和模型不确定性具有更强的抵抗能力。

  • 多模态控制:

     根据不同的工作模式或海况,切换不同的控制策略或PID参数。

⛳️ 运行结果

🔗 参考文献

[1] 苏义鑫,石兵华,张华军.水面无人艇航迹规划算法设计与仿真[J].武汉理工大学学报, 2016, 38(6):5.DOI:10.3963/j.issn.1671-4431.2016.06.014.

[2] 费陈,贺拥亮,赵亮,等.面向海上复杂环境的无人艇集群航迹规划发展综述[J].电讯技术, 2024(7).

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值