✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
在智能电网快速发展的当下,电力系统动态状态估计如同电网运行的 “数字眼睛”,精准捕捉系统实时状态是保障电力可靠供应的关键。传统方法在面对电力系统的非线性、强干扰特性时逐渐力不从心,而扩展卡尔曼滤波(EKF)和无迹卡尔曼滤波(UKF)凭借独特优势,成为了前沿研究的 “明星算法”。今天,咱们就来深度剖析这两种滤波算法在电力系统动态状态估计中的表现!
一、电力系统动态状态估计:为何如此重要?
电力系统是一个庞大且复杂的动态网络,每时每刻都在发生变化。从发电厂的机组运行状态,到输电线路的潮流分布,再到用户侧的负荷波动,海量信息都需要被实时监测和分析。动态状态估计的核心任务,就是基于有限的量测数据(如节点电压幅值、相位,支路功率等),通过数学算法推算出整个电力系统的完整状态。
它的重要性体现在多个方面:一方面,准确的状态估计能帮助电网调度人员掌握系统运行状况,提前发现潜在故障隐患,优化调度决策;另一方面,在电力市场环境下,它是交易结算、电网安全评估的重要数据基础。但电力系统的非线性特性(如潮流方程中的非线性关系)和量测数据中的噪声干扰,给状态估计带来了巨大挑战。
二、扩展卡尔曼滤波(EKF):线性化的 “智慧突围”
1. 核心原理
卡尔曼滤波(KF)原本是用于线性系统的最优状态估计方法,然而电力系统本质是非线性的。EKF 的 “聪明之处” 在于,它通过泰勒级数展开,将非线性系统在当前估计状态点进行一阶线性化近似,把非线性问题转化为线性问题,从而套用卡尔曼滤波的框架进行状态估计。
其核心步骤包括:
- 时间更新
:基于上一时刻的状态估计和系统状态转移方程,预测当前时刻的状态和协方差。
- 量测更新
:利用量测方程和实际量测数据,对预测值进行修正,得到更准确的状态估计。
2. 在电力系统中的应用与局限
在电力系统动态状态估计中,EKF 能够快速处理量测数据,有效抑制噪声影响。它被广泛应用于实时状态估计场景,为电网运行控制提供支撑。
不过,EKF 的局限性也很明显:线性化近似带来的误差不容忽视,当系统状态变化剧烈或远离线性化点时,线性化近似效果变差,可能导致估计精度下降甚至滤波发散;而且,对于复杂电力系统,手动推导非线性函数的雅克比矩阵(线性化过程中的关键矩阵)工作量大,且容易出错 。
三、无迹卡尔曼滤波(UKF):“不走寻常路” 的精准估计
1. 独特的 Sigma 点采样策略
UKF 摒弃了 EKF 的线性化思路,采用了一种全新的 “Sigma 点采样” 策略。它通过精心选择一组 Sigma 点(这些点能够近似描述状态变量的均值和协方差),让这些点直接通过非线性函数,然后根据这些点的输出结果来估计状态变量的均值和协方差。
相比 EKF,UKF 不需要对非线性函数进行线性化,因此能更好地保留非线性系统的特性,在处理强非线性问题时具有更高的精度。
2. 电力系统中的卓越表现
在电力系统动态状态估计应用中,UKF 展现出了强大的性能。面对含有大量非线性元件(如电力电子设备)的现代电网,UKF 能够更准确地跟踪系统状态变化,尤其是在系统遭受大扰动(如短路故障、大型机组启停)时,其估计精度优势更加明显 。此外,UKF 不需要计算雅克比矩阵,降低了算法实现的复杂度和出错概率。
四、EKF 与 UKF:实战对比与应用场景分析
为了直观对比两种算法的性能,我们可以通过仿真实验来模拟电力系统运行场景。设定不同的工况,如正常运行状态下的负荷波动、发生短路故障后的系统暂态过程等,对比 EKF 和 UKF 在估计精度、收敛速度、抗噪声能力等方面的表现。
实验结果往往显示:在系统运行状态较为平稳、非线性程度较低时,EKF 凭借其计算量小的优势,能够快速给出较为准确的估计结果;而当系统处于强非线性工况或受到较大干扰时,UKF 的估计精度则远超 EKF,不过其计算量相对较大,对计算资源要求更高。
因此,在实际应用中,可以根据电网的具体运行情况选择合适的算法。对于对计算速度要求高、系统非线性程度低的场景,EKF 是不错的选择;而在需要高精度估计、处理复杂非线性问题时,UKF 则更具优势。
⛳️ 运行结果
🔗 参考文献
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇