Transformer四模型回归打包(内含NRBO-Transformer-GRU、Transformer-GRU、Transformer、GRU模型)

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

在当今数字化时代,时间序列预测作为一项关键技术,广泛应用于金融、气象、能源等诸多领域。在金融领域,准确预测股票价格走势,能帮助投资者抓住时机,获取丰厚收益;气象领域中,精准的天气预测,可为人们的日常出行和农业生产提供重要参考;能源领域里,对电力负荷的有效预测,有助于合理安排能源供应,避免能源浪费。传统的时间序列预测方法,如 ARIMA、指数平滑法等,在面对简单数据时表现尚可,但当遇到复杂的、非线性的时间序列数据时,就显得力不从心。

随着深度学习技术的迅猛发展,为时间序列预测带来了新的曙光 。它凭借强大的特征学习和非线性建模能力,在处理复杂数据时展现出独特优势。本文将聚焦于 NRBO-Transformer-GRU、Transformer-GRU、Transformer 和 GRU 这几种深度学习模型,深入剖析它们在时间序列预测中的原理、优势与局限,通过对比分析,帮助大家更好地理解和应用这些模型,为实际的时间序列预测任务提供有力支持。

GRU:门控循环单元

GRU 模型简介

GRU(Gated Recurrent Unit),即门控循环单元,作为循环神经网络(RNN)的一种变体,于 2014 年被提出。传统的 RNN 在处理长序列数据时,存在梯度消失或梯度爆炸的问题,使得模型难以学习到长距离的依赖关系 。GRU 的出现,旨在解决这些问题,它通过引入门控机制,能够更好地控制信息在时间序列中的流动,从而有效捕捉长序列之间的语义关联,让模型对过去的信息进行有选择地保留或遗忘。例如在语言翻译任务中,GRU 可以根据前文内容,准确翻译当前词汇,提升翻译的准确性。 与 LSTM(长短期记忆网络)相比,GRU 具有更简单的结构,这使得它在训练时计算成本更低,训练速度更快,同时也能在一定程度上减少过拟合现象。 因此,GRU 在自然语言处理、语音识别、时间序列预测等诸多领域都得到了广泛应用。

GRU 的结构与原理

GRU 的核心结构主要由更新门(update gate)、重置门(reset gate)和隐藏状态(hidden state)组成 。下面结合公式与示意图来详细介绍其工作原理。

Transformer:自注意力机制的变革

Transformer 模型简介

2017 年,谷歌团队在论文《Attention Is All You Need》中提出了 Transformer 模型,犹如一颗重磅炸弹,在自然语言处理领域掀起了一场变革的浪潮。它打破了传统循环神经网络(RNN)和卷积神经网络(CNN)的思维定式,开创性地引入了自注意力(Self-Attention)机制 。这一机制的出现,使得 Transformer 能够对输入序列中的每个位置进行全局的关注,有效捕捉长距离依赖关系,从而在自然语言处理任务中展现出惊人的实力,成为了该领域的重要里程碑。如今,许多先进的预训练模型,如 BERT、GPT 等,都以 Transformer 为基础架构,不断推动着自然语言处理技术的发展和应用。

Transformer 的工作原理

Transformer - GRU:融合的力量

Transformer - GRU 模型简介

Transformer - GRU 模型巧妙地融合了 Transformer 和 GRU 的优势,旨在解决时间序列预测中的复杂问题 。Transformer 强大的自注意力机制能够捕捉序列中的长距离依赖关系,对全局信息进行高效建模;而 GRU 则擅长处理局部的序列信息,通过门控机制有效捕捉时间序列中的短期依赖和动态变化。两者结合,使得 Transformer - GRU 模型在面对既包含长期趋势又有短期波动的时间序列数据时,能够更全面、准确地进行分析和预测。

Transformer - GRU 的模型架构

Transformer - GRU 模型通常采用编码器 - 解码器结构。在编码器部分,首先由 GRU 对输入的时间序列数据进行初步处理 。GRU 按时间步依次处理数据,利用其更新门和重置门机制,对每个时间步的输入和上一时刻的隐藏状态进行计算,生成一系列能够反映局部依赖关系的隐含状态向量。这些隐含状态向量包含了时间序列在局部范围内的重要信息,例如在电力负荷预测中,GRU 可以捕捉到每天不同时段负荷的变化规律等短期依赖信息。

接着,将 GRU 输出的隐含状态向量输入到 Transformer 的编码器层 。Transformer 编码器层中的多头自注意力机制开始发挥作用,它可以并行地计算每个隐含状态向量与其他所有向量之间的注意力权重,从而捕捉到不同时间步之间的全局依赖关系。通过这种方式,模型能够从整体上把握时间序列的长期趋势,比如在分析多年的电力负荷数据时,Transformer 可以发现季节变化对负荷的长期影响。

经过 Transformer 编码器处理后得到的特征表示,会进一步通过一层或多层前馈神经网络进行非线性变换,以增强模型的表达能力 。然后,将这些处理后的特征送入解码器。解码器部分既可以采用 GRU 结构,也可以采用 Transformer 的解码器结构。如果采用 GRU 解码器,它会根据编码器输出的特征表示以及先前预测的结果,逐步生成预测序列,利用 GRU 对时间序列的动态建模能力,不断优化预测结果;若采用 Transformer 解码器,则会利用自注意力机制和编码器 - 解码器注意力机制,更好地捕捉预测序列内部的依赖关系以及与编码器特征表示之间的关系,从而生成更准确的预测结果。

⛳️ 运行结果

图片

图片

图片

图片

图片

图片

📣 部分代码

warning off             % 关闭报警信息

close all               % 关闭开启的图窗

clear                   % 清空变量

clc                     % 清空命令行

%%  导入数据

result = xlsread('data.xlsx');

%%  数据分析

num_samples = length(result);  % 样本个数

or_dim = size(result, 2);      % 原始特征+输出数目

kim =  4;                      % 延时步长(kim个历史数据作为自变量)

zim =  1;                      % 跨zim个时间点进行预测

%%  划分数据集

for i = 1: num_samples - kim - zim + 1

    res(i, :) = [reshape(result(i: i + kim - 1, :), 1, kim * or_dim), result(i + kim + zim - 1, :)];

end

%%  数据集分析

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

数据集介绍:多物种动物目标检测数据集 一、基础信息 数据集名称:多物种动物目标检测数据集 图片数量: - 训练集:7,767张 - 验证集:2,219张 - 测试集:1,110张 总计:11,096张覆盖多场景的动物图片 分类类别: 涵盖75个动物类别,包括: - 大型哺乳动物(熊、大象、长颈鹿、犀牛) - 珍稀物种(熊猫、红熊猫、树袋熊、海豹) - 水生生物(鲨鱼、海龟、水母、螃蟹) - 飞禽与昆虫(鹰、鹦鹉、蝴蝶、瓢虫) - 常见家畜(牛、马、猪、山羊) 标注格式: YOLO格式,含归一化边界框坐标及类别编号,可直接适配YOLOv5/v7/v8等主流框架。 二、适用场景 野生动物监测系统开发: 支持无人机航拍或野外摄像头数据中的动物识别,用于生物多样性研究和偷猎预警。 农业智能化管理: 检测农场牲畜(牛、羊、鸡)的健康状态与行为模式,优化养殖管理效率。 自然教育应用: 集成至AR自然观察工具,实时识别动物种类并提供生态知识讲解。 生物研究数据库建设: 为动物行为学、物种分布研究提供结构化视觉数据支撑。 安防边界预警: 识别特定危险动物(鳄鱼、毒蛇、蝎子),用于营地安全监控系统。 三、数据集优势 物种覆盖全面性: 包含陆地、水生、飞行等生态位的75类动物,涵盖从微型昆虫(瓢虫)到巨型生物(鲸鱼)的尺度跨度。 场景多样性: 整合航拍、地面拍摄、近距离特写等多视角数据,增强模型环境适应能力。 标注专业度: 严格校验的YOLO标注数据,边界框精准匹配动物形态特征,支持复杂遮挡场景检测。 跨领域适用性: 同时满足生态保护、农业管理、教育娱乐等多领域需求,提供从动物检测到细粒度分类的扩展能力。 模型兼容性: 标准YOLO格式支持快速迁移学习,可基于现有权重进行物种定制化模型开发。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值