✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
本论文针对含风、光、荷、储的微网系统,将 V2G(Vehicle-to-Grid,车辆到电网)技术融入其中,基于改进多目标灰狼优化算法开展多目标日前优化调度研究。通过构建包含经济成本、环境效益和供电可靠性的多目标函数,考虑微网运行中的多种约束条件,对改进算法进行设计与优化。仿真结果表明,改进算法在求解微网多目标优化调度问题时,相比传统算法具有更好的收敛性和多样性,有效降低了微网运行成本,提升了环境效益和供电可靠性,为微网的高效、绿色运行提供了理论与技术支持。
关键词
V2G 技术;风、光、荷、储微网;改进多目标灰狼优化算法;多目标日前优化调度
一、引言
1.1 研究背景与意义
随着全球对清洁能源的需求不断增长,风力发电和光伏发电凭借其可再生、无污染的特性,在能源领域得到了广泛应用。然而,风、光资源的间歇性和波动性,给微网的稳定运行带来了巨大挑战。与此同时,电动汽车保有量的迅速增加,使得 V2G 技术逐渐成为研究热点。V2G 技术允许电动汽车在电网负荷低谷时充电,在负荷高峰时向电网放电,不仅能提高电动汽车的利用率,还能有效调节微网的功率平衡,增强微网的灵活性和稳定性。因此,研究考虑 V2G 技术的风、光、荷、储微网多目标日前优化调度,对于提高微网运行效率、降低运行成本、促进清洁能源消纳以及实现能源可持续发展具有重要的现实意义。
1.2 国内外研究现状
国外在 V2G 技术与微网优化调度方面起步较早,已有众多研究成果。一些学者通过建立 V2G 参与微网调度的模型,分析了其对微网运行成本和可靠性的影响。在优化算法方面,遗传算法、粒子群优化算法等被广泛应用于微网调度问题的求解 。国内相关研究也在不断深入,学者们针对我国微网发展的特点,研究了不同类型微网的优化调度策略,同时对优化算法进行改进以提高求解效率和质量 。但目前的研究大多只考虑单一或少数几个优化目标,对经济成本、环境效益和供电可靠性等多目标综合优化调度的研究相对较少,且在算法的优化性能上仍有提升空间。
1.3 研究内容与方法
本研究主要内容包括:分析风、光、荷、储及 V2G 系统的特性,构建考虑 V2G 技术的风、光、荷、储微网多目标日前优化调度模型,设计改进多目标灰狼优化算法求解该模型,并通过仿真实验验证模型和算法的有效性。研究方法上,采用理论分析与仿真实验相结合的方式,运用数学建模方法构建微网调度模型,通过改进优化算法实现模型的求解,并利用仿真软件对结果进行分析。
二、风、光、荷、储及 V2G 系统特性分析
2.1 风力发电系统特性
风力发电的输出功率主要取决于风速,其功率特性呈现明显的随机性和间歇性。根据空气动力学原理,风力发电机的输出功率与风速的三次方成正比,但存在切入风速、额定风速和切出风速限制 。当风速低于切入风速或高于切出风速时,风力发电机无法正常发电;在切入风速和额定风速之间,输出功率随风速增加而快速上升;达到额定风速后,输出功率保持额定值不变。此外,风速还受季节、昼夜、地形等多种因素影响,导致风力发电功率难以准确预测,给微网的稳定运行带来挑战。
2.2 光伏发电系统特性
光伏发电的输出功率主要受光照强度和温度的影响。在理想情况下,光伏电池的输出功率与光照强度成正比,与温度成反比 。白天,随着光照强度的增强,光伏发电功率逐渐上升,在正午达到峰值;傍晚,光照强度减弱,功率随之下降,夜间几乎为零。同时,温度的变化也会对光伏电池的转换效率产生影响,温度升高会导致光伏电池的输出电压降低,从而影响发电功率。光伏发电的这种日变化和季节性变化特性,使其在微网中需要与其他能源协同运行,以保证供电的稳定性。
2.3 负荷特性
微网中的负荷可分为居民负荷、商业负荷和工业负荷等,不同类型的负荷具有不同的用电特性 。居民负荷在一天中呈现出明显的峰谷特性,早晨和傍晚为用电高峰,中午和夜间用电相对较低;商业负荷在工作日的白天用电需求较大,夜间和周末相对较小;工业负荷的用电较为稳定,但不同行业的生产周期和用电规律差异较大。此外,负荷还具有一定的不确定性,如天气变化、突发事件等都可能导致负荷的波动,这对微网的调度和控制提出了更高的要求。
2.4 储能系统特性
储能系统在微网中起到调节功率平衡、平滑新能源出力波动和提高供电可靠性的作用 。常见的储能设备包括锂电池、铅酸电池等。锂电池具有能量密度高、充放电效率高、响应速度快等优点,但成本相对较高;铅酸电池成本较低,但能量密度和循环寿命有限。储能系统的充放电过程受到充放电功率、荷电状态(State of Charge,SOC)等因素的限制 。在优化调度中,需要合理安排储能系统的充放电策略,以充分发挥其作用。
⛳️ 运行结果
📣 部分代码
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇