✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
随着全球对清洁能源需求的不断增长,光伏发电作为重要的可再生能源发电方式,其功率预测的准确性对于电网稳定运行和能源合理调度至关重要。本文提出一种基于变分模态分解(VMD)、多元线性回归(MLR)、北方苍鹰优化算法(NGO)和双向长短期记忆网络(DBiLSTM)的组合模型用于光伏功率预测。首先利用 VMD 将原始光伏功率序列分解为多个不同频率的模态分量,降低序列的复杂性;接着通过 MLR 对分解后的分量进行特征提取,筛选关键影响因素;然后采用 NGO 算法对 DBiLSTM 的参数进行优化,提高模型的预测性能;最后将优化后的 DBiLSTM 模型用于光伏功率预测。通过实际数据实验,与传统单一模型及其他组合模型对比,验证了本文所提组合模型在光伏预测中的高精度和强泛化能力,为光伏电站的运行管理和电力系统调度提供了有效的技术支持。
关键词
变分模态分解;多元线性回归;北方苍鹰优化算法;双向长短期记忆网络;光伏预测
1. 引言
1.1 研究背景
在全球能源结构加速向清洁化、低碳化转型的大背景下,光伏发电凭借其无污染、可再生等优势,在能源领域的地位日益重要。然而,光伏发电具有显著的间歇性、波动性和随机性,其功率输出受光照强度、温度、天气状况等多种因素影响 。这种不确定性给电力系统的稳定运行、电能质量保障以及电网调度带来了巨大挑战 。准确的光伏功率预测能够帮助电网运营商合理安排发电计划,提高电力系统的消纳能力,降低因光伏出力波动导致的运行风险,因此成为当前新能源领域的研究热点。
1.2 国内外研究现状
在光伏预测研究领域,早期多采用传统的物理模型和统计模型。物理模型基于光伏电池的工作原理和气象参数,通过建立数学方程来计算光伏功率,但该模型对气象数据的准确性要求极高,且计算复杂度大,实际应用受限 。统计模型如时间序列分析(ARIMA)、灰色模型(GM)等,利用历史数据建立统计关系进行预测,然而这些模型对非线性、非平稳的光伏功率序列预测效果不佳 。
近年来,随着人工智能技术的快速发展,基于机器学习和深度学习的预测方法逐渐成为主流。支持向量机(SVM)、随机森林(RF)等机器学习算法在光伏预测中取得了一定的成果 ,但这些算法在处理高维、复杂数据时存在泛化能力不足的问题。深度学习模型如长短期记忆网络(LSTM)和门控循环单元(GRU),因其强大的非线性拟合能力和对时间序列的处理能力,在光伏预测中展现出良好的性能 。然而,传统的深度学习模型存在参数难以优化、容易陷入局部最优等问题,影响了预测精度。
为了进一步提高光伏预测的准确性,研究人员开始尝试将多种方法相结合构建组合模型。例如,将经验模态分解(EMD)与 LSTM 相结合,先对光伏功率序列进行分解,再利用 LSTM 对分解后的分量进行预测 ;或者采用智能优化算法对深度学习模型的参数进行优化 。这些组合模型在一定程度上提高了预测性能,但仍存在优化算法效率低、模型结构复杂等问题。
1.3 研究意义与创新点
本文提出的基于 VMD-MLR-NGO-DBiLSTM 的组合模型,旨在充分发挥各方法的优势,提高光伏预测的准确性和可靠性。研究意义主要体现在以下几个方面:一是为光伏电站的运行管理提供准确的功率预测结果,帮助电站合理安排发电计划,降低运行成本;二是为电网调度提供可靠的决策依据,提高电力系统对光伏发电的消纳能力,促进清洁能源的大规模应用;三是丰富光伏预测领域的研究方法,为相关研究提供参考。
本文的创新点主要包括:(1)将 VMD 和 MLR 相结合,对光伏功率序列进行预处理,有效降低序列的复杂性,提取关键特征;(2)引入北方苍鹰优化算法(NGO)对 DBiLSTM 的参数进行优化,克服传统优化算法容易陷入局部最优的问题,提高模型的预测性能;(3)构建 VMD-MLR-NGO-DBiLSTM 组合模型,通过多方法协同作用,实现对光伏功率的高精度预测。
2. 相关理论与方法
2.1 变分模态分解(VMD)
变分模态分解是一种自适应的信号处理方法,能够将复杂的非线性、非平稳信号分解为多个具有不同频率特征的模态分量。其基本原理是通过构建和求解变分模型,将原始信号分解为若干个有限带宽的模态函数,每个模态函数对应一个特定的频率成分 。与传统的经验模态分解(EMD)相比,VMD 不存在模态混叠问题,分解结果更加稳定、可靠。
VMD 的具体实现过程如下:首先,定义多个模态分量的变分约束模型;然后,通过引入二次惩罚因子和拉格朗日乘子,将约束性变分问题转化为无约束性变分问题;最后,利用交替方向乘子法(ADMM)对变分问题进行迭代求解,得到各个模态分量。
2.2 多元线性回归(MLR)
多元线性回归是一种经典的统计分析方法,用于研究多个自变量与一个因变量之间的线性关系。在光伏功率预测中,光照强度、温度、湿度等多种因素都会对光伏功率产生影响,通过 MLR 可以建立这些影响因素与光伏功率之间的线性回归模型,从而筛选出对光伏功率影响显著的关键因素 。
MLR 的数学模型可以表示为:
3.2 数据预处理
数据预处理是提高光伏预测准确性的重要环节。本文收集了某光伏电站的历史光伏功率数据以及对应的气象数据(光照强度、温度、湿度等)。首先对数据进行缺失值处理,采用均值插补法填补缺失数据;然后对数据进行归一化处理,将数据映射到 [0, 1] 区间,消除不同变量之间的量纲差异,提高模型的训练效率和预测精度。
3.3 特征提取
利用 VMD 将预处理后的光伏功率序列分解为
K
个模态分量,每个模态分量代表了原始序列在不同频率下的特征。通过分析各模态分量的特点,选择与光伏功率相关性较高的分量作为后续分析的对象。
接着,将筛选出的模态分量与气象数据作为自变量,光伏功率作为因变量,采用 MLR 建立回归模型。通过计算回归系数的显著性水平,筛选出对光伏功率影响显著的关键因素,减少数据维度,提高模型的运行效率。
3.4 模型优化
采用北方苍鹰优化算法(NGO)对 DBiLSTM 的参数进行优化。在优化过程中,将 DBiLSTM 的预测误差作为 NGO 算法的适应度函数,通过不断调整 DBiLSTM 的参数(如学习率、隐藏层神经元数量、迭代次数等),使适应度函数最小化,从而得到最优的模型参数。
3.5 模型预测
将经过特征提取和参数优化后的数据集输入到优化后的 DBiLSTM 模型中,进行光伏功率预测。在预测过程中,采用滚动预测的方式,每次预测一个时间步长的数据,然后将预测结果与实际数据一起作为下一次预测的输入,逐步完成整个序列的预测。
⛳️ 运行结果
📣 部分代码
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇
✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
随着全球对清洁能源需求的不断增长,光伏发电作为重要的可再生能源发电方式,其功率预测的准确性对于电网稳定运行和能源合理调度至关重要。本文提出一种基于变分模态分解(VMD)、多元线性回归(MLR)、北方苍鹰优化算法(NGO)和双向长短期记忆网络(DBiLSTM)的组合模型用于光伏功率预测。首先利用 VMD 将原始光伏功率序列分解为多个不同频率的模态分量,降低序列的复杂性;接着通过 MLR 对分解后的分量进行特征提取,筛选关键影响因素;然后采用 NGO 算法对 DBiLSTM 的参数进行优化,提高模型的预测性能;最后将优化后的 DBiLSTM 模型用于光伏功率预测。通过实际数据实验,与传统单一模型及其他组合模型对比,验证了本文所提组合模型在光伏预测中的高精度和强泛化能力,为光伏电站的运行管理和电力系统调度提供了有效的技术支持。
关键词
变分模态分解;多元线性回归;北方苍鹰优化算法;双向长短期记忆网络;光伏预测
1. 引言
1.1 研究背景
在全球能源结构加速向清洁化、低碳化转型的大背景下,光伏发电凭借其无污染、可再生等优势,在能源领域的地位日益重要。然而,光伏发电具有显著的间歇性、波动性和随机性,其功率输出受光照强度、温度、天气状况等多种因素影响 。这种不确定性给电力系统的稳定运行、电能质量保障以及电网调度带来了巨大挑战 。准确的光伏功率预测能够帮助电网运营商合理安排发电计划,提高电力系统的消纳能力,降低因光伏出力波动导致的运行风险,因此成为当前新能源领域的研究热点。
1.2 国内外研究现状
在光伏预测研究领域,早期多采用传统的物理模型和统计模型。物理模型基于光伏电池的工作原理和气象参数,通过建立数学方程来计算光伏功率,但该模型对气象数据的准确性要求极高,且计算复杂度大,实际应用受限 。统计模型如时间序列分析(ARIMA)、灰色模型(GM)等,利用历史数据建立统计关系进行预测,然而这些模型对非线性、非平稳的光伏功率序列预测效果不佳 。
近年来,随着人工智能技术的快速发展,基于机器学习和深度学习的预测方法逐渐成为主流。支持向量机(SVM)、随机森林(RF)等机器学习算法在光伏预测中取得了一定的成果 ,但这些算法在处理高维、复杂数据时存在泛化能力不足的问题。深度学习模型如长短期记忆网络(LSTM)和门控循环单元(GRU),因其强大的非线性拟合能力和对时间序列的处理能力,在光伏预测中展现出良好的性能 。然而,传统的深度学习模型存在参数难以优化、容易陷入局部最优等问题,影响了预测精度。
为了进一步提高光伏预测的准确性,研究人员开始尝试将多种方法相结合构建组合模型。例如,将经验模态分解(EMD)与 LSTM 相结合,先对光伏功率序列进行分解,再利用 LSTM 对分解后的分量进行预测 ;或者采用智能优化算法对深度学习模型的参数进行优化 。这些组合模型在一定程度上提高了预测性能,但仍存在优化算法效率低、模型结构复杂等问题。
1.3 研究意义与创新点
本文提出的基于 VMD-MLR-NGO-DBiLSTM 的组合模型,旨在充分发挥各方法的优势,提高光伏预测的准确性和可靠性。研究意义主要体现在以下几个方面:一是为光伏电站的运行管理提供准确的功率预测结果,帮助电站合理安排发电计划,降低运行成本;二是为电网调度提供可靠的决策依据,提高电力系统对光伏发电的消纳能力,促进清洁能源的大规模应用;三是丰富光伏预测领域的研究方法,为相关研究提供参考。
本文的创新点主要包括:(1)将 VMD 和 MLR 相结合,对光伏功率序列进行预处理,有效降低序列的复杂性,提取关键特征;(2)引入北方苍鹰优化算法(NGO)对 DBiLSTM 的参数进行优化,克服传统优化算法容易陷入局部最优的问题,提高模型的预测性能;(3)构建 VMD-MLR-NGO-DBiLSTM 组合模型,通过多方法协同作用,实现对光伏功率的高精度预测。
2. 相关理论与方法
2.1 变分模态分解(VMD)
变分模态分解是一种自适应的信号处理方法,能够将复杂的非线性、非平稳信号分解为多个具有不同频率特征的模态分量。其基本原理是通过构建和求解变分模型,将原始信号分解为若干个有限带宽的模态函数,每个模态函数对应一个特定的频率成分 。与传统的经验模态分解(EMD)相比,VMD 不存在模态混叠问题,分解结果更加稳定、可靠。
VMD 的具体实现过程如下:首先,定义多个模态分量的变分约束模型;然后,通过引入二次惩罚因子和拉格朗日乘子,将约束性变分问题转化为无约束性变分问题;最后,利用交替方向乘子法(ADMM)对变分问题进行迭代求解,得到各个模态分量。
2.2 多元线性回归(MLR)
多元线性回归是一种经典的统计分析方法,用于研究多个自变量与一个因变量之间的线性关系。在光伏功率预测中,光照强度、温度、湿度等多种因素都会对光伏功率产生影响,通过 MLR 可以建立这些影响因素与光伏功率之间的线性回归模型,从而筛选出对光伏功率影响显著的关键因素 。
MLR 的数学模型可以表示为:
3.2 数据预处理
数据预处理是提高光伏预测准确性的重要环节。本文收集了某光伏电站的历史光伏功率数据以及对应的气象数据(光照强度、温度、湿度等)。首先对数据进行缺失值处理,采用均值插补法填补缺失数据;然后对数据进行归一化处理,将数据映射到 [0, 1] 区间,消除不同变量之间的量纲差异,提高模型的训练效率和预测精度。
3.3 特征提取
利用 VMD 将预处理后的光伏功率序列分解为
K
个模态分量,每个模态分量代表了原始序列在不同频率下的特征。通过分析各模态分量的特点,选择与光伏功率相关性较高的分量作为后续分析的对象。
接着,将筛选出的模态分量与气象数据作为自变量,光伏功率作为因变量,采用 MLR 建立回归模型。通过计算回归系数的显著性水平,筛选出对光伏功率影响显著的关键因素,减少数据维度,提高模型的运行效率。
3.4 模型优化
采用北方苍鹰优化算法(NGO)对 DBiLSTM 的参数进行优化。在优化过程中,将 DBiLSTM 的预测误差作为 NGO 算法的适应度函数,通过不断调整 DBiLSTM 的参数(如学习率、隐藏层神经元数量、迭代次数等),使适应度函数最小化,从而得到最优的模型参数。
3.5 模型预测
将经过特征提取和参数优化后的数据集输入到优化后的 DBiLSTM 模型中,进行光伏功率预测。在预测过程中,采用滚动预测的方式,每次预测一个时间步长的数据,然后将预测结果与实际数据一起作为下一次预测的输入,逐步完成整个序列的预测。
⛳️ 运行结果
📣 部分代码
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
随着全球对清洁能源需求的不断增长,光伏发电作为重要的可再生能源发电方式,其功率预测的准确性对于电网稳定运行和能源合理调度至关重要。本文提出一种基于变分模态分解(VMD)、多元线性回归(MLR)、北方苍鹰优化算法(NGO)和双向长短期记忆网络(DBiLSTM)的组合模型用于光伏功率预测。首先利用 VMD 将原始光伏功率序列分解为多个不同频率的模态分量,降低序列的复杂性;接着通过 MLR 对分解后的分量进行特征提取,筛选关键影响因素;然后采用 NGO 算法对 DBiLSTM 的参数进行优化,提高模型的预测性能;最后将优化后的 DBiLSTM 模型用于光伏功率预测。通过实际数据实验,与传统单一模型及其他组合模型对比,验证了本文所提组合模型在光伏预测中的高精度和强泛化能力,为光伏电站的运行管理和电力系统调度提供了有效的技术支持。
关键词
变分模态分解;多元线性回归;北方苍鹰优化算法;双向长短期记忆网络;光伏预测
1. 引言
1.1 研究背景
在全球能源结构加速向清洁化、低碳化转型的大背景下,光伏发电凭借其无污染、可再生等优势,在能源领域的地位日益重要。然而,光伏发电具有显著的间歇性、波动性和随机性,其功率输出受光照强度、温度、天气状况等多种因素影响 。这种不确定性给电力系统的稳定运行、电能质量保障以及电网调度带来了巨大挑战 。准确的光伏功率预测能够帮助电网运营商合理安排发电计划,提高电力系统的消纳能力,降低因光伏出力波动导致的运行风险,因此成为当前新能源领域的研究热点。
1.2 国内外研究现状
在光伏预测研究领域,早期多采用传统的物理模型和统计模型。物理模型基于光伏电池的工作原理和气象参数,通过建立数学方程来计算光伏功率,但该模型对气象数据的准确性要求极高,且计算复杂度大,实际应用受限 。统计模型如时间序列分析(ARIMA)、灰色模型(GM)等,利用历史数据建立统计关系进行预测,然而这些模型对非线性、非平稳的光伏功率序列预测效果不佳 。
近年来,随着人工智能技术的快速发展,基于机器学习和深度学习的预测方法逐渐成为主流。支持向量机(SVM)、随机森林(RF)等机器学习算法在光伏预测中取得了一定的成果 ,但这些算法在处理高维、复杂数据时存在泛化能力不足的问题。深度学习模型如长短期记忆网络(LSTM)和门控循环单元(GRU),因其强大的非线性拟合能力和对时间序列的处理能力,在光伏预测中展现出良好的性能 。然而,传统的深度学习模型存在参数难以优化、容易陷入局部最优等问题,影响了预测精度。
为了进一步提高光伏预测的准确性,研究人员开始尝试将多种方法相结合构建组合模型。例如,将经验模态分解(EMD)与 LSTM 相结合,先对光伏功率序列进行分解,再利用 LSTM 对分解后的分量进行预测 ;或者采用智能优化算法对深度学习模型的参数进行优化 。这些组合模型在一定程度上提高了预测性能,但仍存在优化算法效率低、模型结构复杂等问题。
1.3 研究意义与创新点
本文提出的基于 VMD-MLR-NGO-DBiLSTM 的组合模型,旨在充分发挥各方法的优势,提高光伏预测的准确性和可靠性。研究意义主要体现在以下几个方面:一是为光伏电站的运行管理提供准确的功率预测结果,帮助电站合理安排发电计划,降低运行成本;二是为电网调度提供可靠的决策依据,提高电力系统对光伏发电的消纳能力,促进清洁能源的大规模应用;三是丰富光伏预测领域的研究方法,为相关研究提供参考。
本文的创新点主要包括:(1)将 VMD 和 MLR 相结合,对光伏功率序列进行预处理,有效降低序列的复杂性,提取关键特征;(2)引入北方苍鹰优化算法(NGO)对 DBiLSTM 的参数进行优化,克服传统优化算法容易陷入局部最优的问题,提高模型的预测性能;(3)构建 VMD-MLR-NGO-DBiLSTM 组合模型,通过多方法协同作用,实现对光伏功率的高精度预测。
2. 相关理论与方法
2.1 变分模态分解(VMD)
变分模态分解是一种自适应的信号处理方法,能够将复杂的非线性、非平稳信号分解为多个具有不同频率特征的模态分量。其基本原理是通过构建和求解变分模型,将原始信号分解为若干个有限带宽的模态函数,每个模态函数对应一个特定的频率成分 。与传统的经验模态分解(EMD)相比,VMD 不存在模态混叠问题,分解结果更加稳定、可靠。
VMD 的具体实现过程如下:首先,定义多个模态分量的变分约束模型;然后,通过引入二次惩罚因子和拉格朗日乘子,将约束性变分问题转化为无约束性变分问题;最后,利用交替方向乘子法(ADMM)对变分问题进行迭代求解,得到各个模态分量。
2.2 多元线性回归(MLR)
多元线性回归是一种经典的统计分析方法,用于研究多个自变量与一个因变量之间的线性关系。在光伏功率预测中,光照强度、温度、湿度等多种因素都会对光伏功率产生影响,通过 MLR 可以建立这些影响因素与光伏功率之间的线性回归模型,从而筛选出对光伏功率影响显著的关键因素 。
MLR 的数学模型可以表示为:
3.2 数据预处理
数据预处理是提高光伏预测准确性的重要环节。本文收集了某光伏电站的历史光伏功率数据以及对应的气象数据(光照强度、温度、湿度等)。首先对数据进行缺失值处理,采用均值插补法填补缺失数据;然后对数据进行归一化处理,将数据映射到 [0, 1] 区间,消除不同变量之间的量纲差异,提高模型的训练效率和预测精度。
3.3 特征提取
利用 VMD 将预处理后的光伏功率序列分解为
K
个模态分量,每个模态分量代表了原始序列在不同频率下的特征。通过分析各模态分量的特点,选择与光伏功率相关性较高的分量作为后续分析的对象。
接着,将筛选出的模态分量与气象数据作为自变量,光伏功率作为因变量,采用 MLR 建立回归模型。通过计算回归系数的显著性水平,筛选出对光伏功率影响显著的关键因素,减少数据维度,提高模型的运行效率。
3.4 模型优化
采用北方苍鹰优化算法(NGO)对 DBiLSTM 的参数进行优化。在优化过程中,将 DBiLSTM 的预测误差作为 NGO 算法的适应度函数,通过不断调整 DBiLSTM 的参数(如学习率、隐藏层神经元数量、迭代次数等),使适应度函数最小化,从而得到最优的模型参数。
3.5 模型预测
将经过特征提取和参数优化后的数据集输入到优化后的 DBiLSTM 模型中,进行光伏功率预测。在预测过程中,采用滚动预测的方式,每次预测一个时间步长的数据,然后将预测结果与实际数据一起作为下一次预测的输入,逐步完成整个序列的预测。
⛳️ 运行结果
📣 部分代码
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇