长短期记忆网络(LSTM)和生成对抗网络(GAN)

长短期记忆网络(LSTM)和生成对抗网络(GAN)

概要

本文介绍了使用长短期记忆网络(LSTM)和生成对抗网络(GAN)结合的方法来检测金融市场中的异常交易行为。这种方法可以有效地学习正常交易数据的分布,并生成新的样本来训练判别器,从而提高异常检测的准确性。

整体架构流程

数据预处理:从CSV文件中加载数据,进行特征选择和数据标准化。
模型构建:
生成器:使用全连接层和批量归一化层构建,输入为随机噪声,输出为生成的交易数据。
判别器:使用LSTM层和全连接层构建,输入为交易数据,输出为数据是否正常的概率。
模型训练:交替训练生成器和判别器,使用二元交叉熵作为损失函数,优化器为Adam。
模型评估:在测试集上评估判别器的准确率,检测模型对异常交易的识别能力。

技术名词解释

LSTM (Long Short-Term Memory):一种特殊的循环神经网络,能够学习长期依赖关系。
GAN (Generative Adversarial Network):由一个生成器和一个判别器组成的神经网络,通过对抗训练过程来生成接近真实数据的样本。
Adam:一种自适应学习率的优化算法,常用于训练深度学习模型。
批量归一化(Batch Normalization):一种提高神经网络训练速度和稳定性的技术。

技术细节

数据预处理:使用MinMaxScaler进行数据标准化,将数据缩放到0到1之间。
生成器:首先使用全连接层将输入的随机噪声映射到更高维度,然后通过批量归一化和激活函数进行处理,最后通过另一个全连接层生成模拟的交易数据。
判别器:使用两个LSTM层来提取时间序列数据的特征,然后通过全连接层输出判断结果。
训练过程:在每个训练批次中,首先训练判别器区分真实数据和生成数据,然后固定判别器的参数,训练生成器欺骗判别器

import numpy as np
import pandas as pd
from keras.models import Sequential, Model
from keras.layers import LSTM, Dense, Input, Dropout, BatchNormalization, Reshape, Flatten
from keras.optimizers import Adam
from keras.utils import to_categorical
from sklearn.preprocessing import MinMaxScaler
from sklearn.model_selection import train_test_split
import warnings

warnings.filterwarnings('ignore')

#加载数据集,导入csv文件
data = pd.read_csv('data/lstm.csv',header=0,parse_dates=['timestamp'], index_col=['timestamp'])
columns = ['Turnover_rate', 'Dvtnvl', 'Ampltd', 'Pchange', 'PchangeR', 'perturnvol', 'perdeclared']

# 特征数据集

X = data.drop(columns=['Abnormal'], axis=1)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值