长短期记忆网络(LSTM)和生成对抗网络(GAN)

长短期记忆网络(LSTM)和生成对抗网络(GAN)

概要

本文介绍了使用长短期记忆网络(LSTM)和生成对抗网络(GAN)结合的方法来检测金融市场中的异常交易行为。这种方法可以有效地学习正常交易数据的分布,并生成新的样本来训练判别器,从而提高异常检测的准确性。

整体架构流程

数据预处理:从CSV文件中加载数据,进行特征选择和数据标准化。
模型构建:
生成器:使用全连接层和批量归一化层构建,输入为随机噪声,输出为生成的交易数据。
判别器:使用LSTM层和全连接层构建,输入为交易数据,输出为数据是否正常的概率。
模型训练:交替训练生成器和判别器,使用二元交叉熵作为损失函数,优化器为Adam。
模型评估:在测试集上评估判别器的准确率,检测模型对异常交易的识别能力。

技术名词解释

LSTM (Long Short-Term Memory):一种特殊的循环神经网络,能够学习长期依赖关系。
GAN (Generative Adversarial Network):由一个生成器和一个判别器组成的神经网络,通过对抗训练过程来生成接近真实数据的样本。
Adam:一种自适应学习率的优化算法,常用于训练深度学习模型。
批量归一化(Batch Normalization):一种提高神经网络训练速度和稳定性的技术。

技术细节

数据预处理:使用MinMaxScaler进行数据标准化,将数据缩放到0到1之间。
生成器:首先使用全连接层将输入的随机噪声映射到更高维度,然后通过批量归一化和激活函数进行处理,最后通过另一个全连接层生成模拟的交易数据。
判别器:使用两个LSTM层来提取时间序列数据的特征,然后通过全连接层输出判断结果。
训练过程:在每个训练批次中,首先训练判别器区分真实数据和生成数据,然后固定判别器的参数,训练生成器欺骗判别器

import numpy as np
import pandas as pd
from keras.models import Sequential, Model
from keras.layers import LSTM, Dense, Input, Dropout, BatchNormalization, Reshape, Flatten
from keras.optimizers import Adam
from keras.utils import to_categorical
from sklearn.preprocessing import MinMaxScaler
from sklearn.model_selection import train_test_split
import warnings

warnings.filterwarnings('ignore')

#加载数据集,导入csv文件
data = pd.read_csv('data/lstm.csv',header=0,parse_dates=['timestamp'], index_col=['timestamp'])
columns = ['Turnover_rate', 'Dvtnvl', 'Ampltd', 'Pchange', 'PchangeR', 'perturnvol', 'perdeclared']

# 特征数据集

X = data.drop(columns=['Abnormal'], axis=1)

# 标签数据集

y = data['Abnormal']

#区分特征标签与异常标签
X_train, X_test, y_train, y_test = train_test_split(X, y , test_size=0.3, random_state=42)
# 数据预处理
scaler = MinMaxScaler()
X_train = scaler.fit_transform(X_train.values.reshape(-1, X_train.shape[-1])).reshape(X_train.shape)
X_test = scaler.transform(X_test.values.reshape(-1, X_test.shape[-1])).reshape(X_test.shape)
X_train = X_train.reshape(X_train.shape + (1,))
X_test = X_test.reshape(X_test.shape + (1,))
num_classes = len(np.unique(y_train))

# 定义LSTM-GAN模型
latent_dim = 100

# 定义生成器

generator = Sequential()
generator.add(Dense(128 * 7, activation='relu', input_dim=latent_dim))
generator.add(Reshape((7, 128)))
generator.add(BatchNormalization())
generator.add(Dense(64, activation='relu'))
generator.add(BatchNormalization())
generator.add(Dense(1, activation='tanh'))
generator.add(Reshape((7, 1)))
generator.summary()


# 定义判别器


discriminator_input = Input(shape=(7, 1))
discriminator = Sequential()
discriminator.add(LSTM(64, return_sequences=True, input_shape=(7, 1)))
discriminator.add(Dropout(0.5))
discriminator.add(LSTM(32))
discriminator.add(Dropout(0.5))
discriminator.add(Dense(1, activation='sigmoid'))
discriminator.summary()


# 训练判别器
gan_input = Input(shape=(latent_dim,))
gan_output = discriminator(generator(gan_input))
gan = Model(gan_input, gan_output)
gan.compile(optimizer=Adam(lr=0.0002, beta_1=0.5), loss='binary_crossentropy')



# 训练LSTM-GAN模型
batch_size = 32
epochs = 50
for epoch in range(epochs):
    print('Epoch {} of {}'.format(epoch + 1, epochs))
    for batch in range(X_train.shape[0] // batch_size):
        # 训练判别器
        noise = np.random.normal(0, 1, size=(batch_size, latent_dim))
        generated_data = generator.predict(noise)
        real_data = X_train[batch * batch_size:(batch + 1) * batch_size]
        X = np.concatenate([generated_data, real_data])
        y = np.zeros(2 * batch_size)
        y[:batch_size] = 1
        discriminator_loss = discriminator.train_on_batch(X, y)

        # 训练生成器
    noise = np.random.normal(0, 1, size=(batch_size, latent_dim))
    y = np.ones(batch_size)
    gan_loss = gan.train_on_batch(noise, y)

discriminator.trainable = True
discriminator.compile(optimizer=Adam(lr=0.0002, beta_1=0.5), loss='binary_crossentropy', metrics=['accuracy'])
# 每轮结束时评估模型
noise = np.random.normal(0, 1, size=(X_test.shape[0], latent_dim))
generated_data = generator.predict(noise)
X = np.concatenate([generated_data, X_test])
y = np.zeros(X.shape[0])
y[:X_test.shape[0]] = 1
# loss, acc = discriminator.evaluate(X, y, verbose=0)
# print('Discriminator accuracy: {}%'.format(acc * 100))
X = X_test
y = np.ones(X.shape[0])
loss, acc = discriminator.evaluate(X, y, verbose=0, return_dict=True)


print('Test accuracy: {}%'.format(acc * 1))

小结

通过结合LSTM和GAN,我们可以构建一个能够有效检测金融市场异常交易行为的模型。该模型能够学习正常交易数据的分布,并生成新的样本来提高判别器的识别能力,从而提高异常检测的准确性。

  • 13
    点赞
  • 26
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
基于RNN_LSTM_GAN混合预测是一种结合了循环神经网络(RNN)、长短期记忆LSTM)和生成对抗网络GAN)的预测模型。 RNN是一种能够处理序列数据的神经网络。通过RNN的循环结构,它可以在处理每个序列的同时记住之前已处理的序列信息。而LSTM则是RNN的一种改进版本,通过引入记忆单元和门控机制,解决了传统RNN在长序列处理时容易出现梯度消失或爆炸的问题。 GAN是由生成器和判别器组成的对抗训练网络。生成器负责生成与真实数据相似的假数据,而判别器则负责判断输入数据是真实数据还是生成器生成的假数据。通过不断优化生成器和判别器,GAN可以生成更加逼真的假数据。 基于RNN_LSTM_GAN混合预测的过程如下:首先,使用RNN_LSTM模型对历史序列数据进行训练和预测,以便对当前的序列数据进行预测。然后,将LSTM模型的输出作为GAN的输入,通过生成器生成一些假数据。接着,将真实数据和生成的假数据混合在一起,再次使用RNN_LSTM模型进行预测。最后,根据判别器对混合数据的判别结果,调整RNN_LSTM模型的参数和反馈,优化整个预测过程。 通过基于RNN_LSTM_GAN的混合预测模型,可以更好地利用序列数据的时间依赖性和复杂的非线性特征,提高预测的准确性和泛化能力。同时,GAN的引入可以增加样本的多样性,帮助模型更好地捕捉数据的分布特点,提升预测的质量和稳定性。 总之,基于RNN_LSTM_GAN混合预测是一种有效的预测方法,通过结合不同的神经网络模型和训练策略,能够更好地处理序列数据的预测问题,拓展数据的生成和预测能力。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值