CDC控制仿真--综合实验,模型+代码

本文详细描述了一个使用carsim和simulink进行的车辆控制性能实验,涉及加减速、转向、路面条件下的侧倾、纵向控制以及滤振效果的仿真。实验旨在评估运动解算准确性,并对比加入控制后在不同路况下的性能提升。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、工况设置

加减速:从0开始加速--匀速40Km/h--减速至0;

转向:在道路65m~70m之间,有一个转向变道再回来的避障动作。

路面设置:C级路面,300m处,设置高30mm的减速带。

二、实验目标

1、对比车辆运动解算结果的准确性,运动解算的文章:整车运动解算及与carsim仿真对比_carsim plot垂向位移-CSDN博客

2、对比加入控制后,侧倾性能是否提升,相关文章:

转向侧倾控制模块开发及与carsim联合仿真对比-CSDN博客

3、对比加入控制后,纵向控制性能是否提升,相关文章:

制动点头与加速抬头控制及与carsim联合仿真对比-CSDN博客

4、对比加入控制后,粗糙路面上,滤振效果是否提升,相关文章:

SH垂向控制模块开发及与carsim联合仿真对比-CSDN博客

5、对比加入控制后,过减速带时,性能是否有提升,相关文章:

过减速带控制效果优化-CSDN博客

三、仿真模型说明:

1、carsim配置

simulink信号输入到carsim整车模型

carsim整车模型输出信号到simulink

2、simulink模型

主要包括以下几个部分

1)估算车身FL、FR、RL、RR四个位置的垂向运动速度;
2)过减速带检测;
3)天棚垂向控制;
4)侧向控制,提升侧倾性能;
5)纵向控制,提升俯仰性能;
6)综合输出;
7)模拟减振器,根据速度、电流,确定输出到carsim的阻尼力。

3、仿真结果

 1、对比车辆运动解算结果的准确性,整体还凑合:

2、对比加入控制后,侧倾性能、纵向控制性能、过减速带时,性能都有较好提升。

3、对比加入控制后,水平粗糙路面上,滤振效果。均方根值上有所提升。

在1.5Hz左右的车身工作频率处,有加控制的表现明显优于常规配置。

四、关于模型

关键步骤在此博客及之前博客中已经给出,如果还有老铁仍需要源码及源模型,仍然可从某宝店铺  极简车辆控制  中获得。

包含以下几个文件:

取得以上文件后,进行仿真,参照以下步骤。

1、双击carsim图标,打开carsim,选择红框中的按钮,并continue;

2、选择文件夹中的CDC_Ctrl.cpar文件,并按照提示,创建一个文件夹,用于存放carsim工程,在接下来的对话框中,直接按照默认的第一个,点击select,出现进度条,导入完成后,会弹出carsim界面。

3、更改simulink模型路径,

先解锁,再点击simlink模型名称,蓝色位置。

在这个界面中,同样需要先解锁,然后把这两个路径设置到存放simulink模型的位置。

4、点击home,返回主界面,点击Send to Simulink,可以打开matlab,并打开simulink模型。

5、运行脚本,运行仿真。脚本里包含了运行simulink模型的命令,simulink模型与carsim关联,会一起运行。运行完后,能看到上文中展示的结果图片。

6、点击carsim中的video,可以看仿真录像。

7、仿真环境

博主用的是carsim 2019+matlab2022b版本。

carsim建议用2019版本,下载及按照过程可参照b站链接:

最新!Carsim2019详细安装教程【附安装包】_哔哩哔哩_bilibili

如果你的matlab不是2022b版本,注意核对下carsim工程中这个matlab版本选项。

同时,这里选择另存的2018b版本模型,同时,脚本中需要将运行模型名称改一下成匹配的模型,再运行即可。

 


 

内容概要:本文深入研究了基于CDC(Continuous Damping Control)减振器的半主动悬架系统的控制策略。主要内容包括:(1)建立了CDC减振器的动力学模型,并通过实验验证了其阻尼特性;(2)搭建了1/4车辆悬架模型,分析了阻尼系数对悬架性能的影响;(3)引入了PID、自适应模糊PID和模糊-PID并联三种控制策略,通过仿真比较了它们的性能提升效果。研究表明,模糊-PID并联控制策略能够最优地提升悬架的综合性能,在平顺性和稳定性之间取得了最佳平衡。此外,还进行了频域分析、改进控制策略、性能评价函数优化等工作,验证了改进控制策略的有效性和优越性。 适合人群:汽车工程领域研究人员、从事车辆悬架系统设计与开发的工程师、对车辆动态性能优化感兴趣的高校师生。 使用场景及目标:①研究不同控制策略对半主动悬架系统性能的影响;②优化悬架系统的控制算法以提高车辆行驶的舒适性和稳定性;③为实际车辆悬架系统的开发提供理论依据和技术支持;④探索CDC减振器在不同工况下的动态响应特性及其应用潜力。 其他说明:本文不仅详细阐述了CDC减振器的工作原理和数学建模方法,还提供了完整的Python代码实现,便于读者理解和复现研究过程。文中通过大量的图表展示了不同控制策略的效果对比,直观地反映了模糊-PID并联控制策略的优势。同时,针对实际应用中可能遇到的问题,如参数敏感性分析、路面激励模型构建等进行了探讨,为后续的研究和工程实践提供了有价值的参考。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

极简车辆控制

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值