提示词
有没有想过,为什么你用 SD 生成的猫是长这样的。
而其他人可以生成这样的猫。
![]() | ![]() | ![]() |
---|
虽然生成的都是猫,但猫与猫之间还是有差距的。
如果你的提示词只是“cat”,那大概率就会出现本文第一张图的那个效果。而如果你加上一些形容词,出图的效果会更加丰富多彩。
基础语法
不管是使用 MJ 还是 SD,提示词和使用 ChatGPT
是稍有不同的。
使用 ChatGPT 可以用自然语言和它对话,而使用 MJ 或者 SD 则需要通过一个个描述性的词语 和它聊天。
跟 SD 交流的提示词,大致分为以下几部分:
- 主体描述
- 主体特征
- 背景描述
- 光线
- 视觉
- 画风
举个例子,我想生成一张在外太空拍摄的女性宇航员照片,我会用以下描述词。
(一个宇航员女孩的肖像:1.2)((夜空,在太空中,背景中巨大的行星宇宙飞船内部的光)),(短直发),黑色眼睛,长睫毛,轻盈的微笑,(薄而合身的太空服),纹理皮肤细节,详细的织物纹理,现实主义,真实感,景深,电影效果,反射光,广角,镜头光圈
* 1
* 2
然后找翻译工具转成英文提示词。
(portrait of an astronaut girl:1.2)((night sky, in space, light inside a giant planetary spaceship in the background)), (short straight hair), black eyes, long eyelashes, lithe smile, (thin and fitted spacesuit), textured skin details, detailed fabric textures, realism, realism, depth of field, cinematic effects, reflected light, wide Angle, lens aperture
* 1
* 2
为什么上面的提示词中,有些词会用括号包裹起来呢?比如这个词 (一个宇航员女孩的肖像:1.2)
, (短直发)
。
圆括号的意思是要增加这个词的权重,每多套一层圆括号权重就越大。单个括号增加0.1的权重,使用冒号和数值可以更精确地调整权重,例如(一个宇航员女孩的肖像:1.2)
的权重为1.2。
除了提高权重,还有降低某个提示词权重的方法,就是用方括号 [] 包裹提示词。
想不出提示词怎么办?
方法1:抄!
如果自己实在想不出提示词,还可以看看别人是怎么写的。
比如,我在C站看到这个图很好看,点开它,把它的提示词和参数拿过来。
如果条件允许的话就把他使用的模型也下载下来。
这个例子,我把提示词复制下来,种子数使用了随机(-1),宽高设置了 960 * 960。
方法2:找GPT帮忙
还有一种写提示词的方法,就是让GPT帮忙生成提示词。
以下是我和GPT的对话,user表示我发出去的信息,ChatGPT表示GPT的回答。
【user】
丰富以下场景的细节
###
一个满头白发的漂亮女巫在昏暗的房间用水晶球预测未来。
【ChatGPT】
昏暗的房间中,烛光摇曳,映照在古老的墙壁上。女巫身披一袭深蓝色长袍,白发如银瀑般垂落在肩上。她优雅地坐在桌前,水晶球散发着神秘的光芒,映照着她专注的眼神。
【user】
把这个场景转成30个文生图的提示词,每个词语之间用逗号风格排列好给我
【ChatGPT】
昏暗房间,烛光摇曳,古老墙壁,女巫,深蓝长袍,白发,银瀑,优雅,桌前,水晶球,神秘光芒,专注眼神
【user】
用英文翻译一下以上提示词
【ChatGPT】
Dim room, flickering candlelight, ancient walls, witch, deep blue robe, white hair, silver cascade, elegance, table, crystal ball, mysterious glow, focused gaze

* 1
* 2
* 3
* 4
* 5
* 6
* 7
* 8
* 9
* 10
* 11
* 12
* 13
* 14
* 15
* 16
* 17
* 18
* 19
* 20
出图效果:
方法3:SD识别
如果是用SD生成的图片,在PNG Info 里导入图片它可以自动识别出图片的参数。
目前 ControlNet 已经更新到 1.1 版本,相较于 1.0 版本,ControlNet1.1 新增了更多的预处理器和模型,每种模型对应不同的采集方式,再对应不同的应用场景,每种应用场景又有不同的变现空间
我花了一周时间彻底把ControlNet1.1的14种模型研究了一遍,跑了一次全流程,终于将它完整下载好整理成网盘资源。
其总共11 个生产就绪模型、2 个实验模型和 1 个未完成模型,现在就分享给大家,点击下方卡片免费领取。
1. 线稿上色
**方法:**通过 ControlNet 边缘检测模型或线稿模型提取线稿(可提取参考图片线稿,或者手绘线稿),再根据提示词和风格模型对图像进行着色和风格化。
**应用模型:**Canny、SoftEdge、Lineart。
Canny 示例:(保留结构,再进行着色和风格化)
2. 涂鸦成图
方法:通过 ControlNet 的 Scribble 模型提取涂鸦图(可提取参考图涂鸦,或者手绘涂鸦图),再根据提示词和风格模型对图像进行着色和风格化。
应用模型:Scribble。
Scribble 比 Canny、SoftEdge 和 Lineart 的自由发挥度要更高,也可以用于对手绘稿进行着色和风格处理。Scribble 的预处理器有三种模式:Scribble_hed,Scribble_pidinet,Scribble_Xdog,对比如下,可以看到 Scribble_Xdog 的处理细节更为丰富:
Scribble 参考图提取示例(保留大致结构,再进行着色和风格化):
3. 建筑/室内设计
**方法:**通过 ControlNet 的 MLSD 模型提取建筑的线条结构和几何形状,构建出建筑线框(可提取参考图线条,或者手绘线条),再配合提示词和建筑/室内设计风格模型来生成图像。
**应用模型:**MLSD。
MLSD 示例:(毛坯变精装)
这份完整版的ControlNet 1.1模型我已经打包好,需要的点击下方插件,即可前往免费领取!
4. 颜色控制画面
**方法:**通过 ControlNet 的 Segmentation 语义分割模型,标注画面中的不同区块颜色和结构(不同颜色代表不同类型对象),从而控制画面的构图和内容。
**应用模型:**Seg。
Seg 示例:(提取参考图内容和结构,再进行着色和风格化)
如果还想在车前面加一个人,只需在 Seg 预处理图上对应人物色值,添加人物色块再生成图像即可。
5. 背景替换
**方法:**在 img2img 图生图模式中,通过 ControlNet 的 Depth_leres 模型中的 remove background 功能移除背景,再通过提示词更换想要的背景。
**应用模型:**Depth,预处理器 Depth_leres。
**要点:**如果想要比较完美的替换背景,可以在图生图的 Inpaint 模式中,对需要保留的图片内容添加蒙版,remove background 值可以设置在 70-80%。
Depth_leres 示例:(将原图背景替换为办公室背景)
6. 图片指令
**方法:**通过 ControlNet 的 Pix2Pix 模型(ip2p),可以对图片进行指令式变换。
应用模型:ip2p,预处理器选择 none。
**要点:**采用指令式提示词(make Y into X),如下图示例中的 make it snow,让非洲草原下雪。
Pix2Pix 示例:(让非洲草原下雪)
7. 风格迁移
**方法:**通过 ControlNet 的 Shuffle 模型提取出参考图的风格,再配合提示词将风格迁移到生成图上。
**应用模型:**Shuffle。
Shuffle 示例:(根据魔兽道具风格,重新生成一个宝箱道具)
8. 色彩继承
**方法:**通过 ControlNet 的 t2iaColor 模型提取出参考图的色彩分布情况,再配合提示词和风格模型将色彩应用到生成图上。
**应用模型:**Color。
Color 示例:(把参考图色彩分布应用到生成图上)
这份完整版的ControlNet 1.1模型我已经打包好,需要的点击下方插件,即可前往免费领取!
这里就简单说几种应用:
1. 人物和背景分别控制
2. 三维重建
3. 更精准的图片风格化
4. 更精准的图片局部重绘
以上就是本教程的全部内容了,重点介绍了controlnet模型功能实用,当然还有一些小众的模型在本次教程中没有出现,目前controlnet模型确实还挺多的,所以重点放在了官方发布的几个模型上。
同时大家可能都想学习AI绘画技术,也想通过这项技能真正赚到钱,但是不知道该如何开始学习,因为网上的资料太多太杂乱了,如果不能系统的学习就相当于是白学,因为自身做副业需要,我这边整理了全套的Stable Diffusion入门知识点资料,大家有需要可以直接点击下边卡片获取,希望能够真正帮助到大家。