微积分-导数2(导数函数)

在前面的部分中,我们考虑了函数 f f f在固定点 a a a处的导数:

f ′ ( a ) = lim ⁡ h → 0 f ( a + h ) − f ( a ) h \begin{equation}f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}\end{equation} f(a)=h0limhf(a+h)f(a)

如果我们将等式中的 a a a替换为变量 x x x,我们得到:

f ′ ( x ) = lim ⁡ h → 0 f ( x + h ) − f ( x ) h \begin{equation}f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}\end{equation} f(x)=h0limhf(x+h)f(x)
因此,我们可以将 f ′ f' f为一个新函数,称为 f f f导数,并由方程(2)定义。 f ′ f' f的定义域是 { x ∣ f ′ ( x )  存在 } \{ x | f'(x) \text{ 存在} \} {xf(x) 存在},可能小于 f f f的定义域。

例一:已知函数 f f f的图像,画出 f ′ f' f的图像。
在这里插入图片描述
我们可以通过在点 ( x , f ( x ) ) (x, f(x)) (x,f(x)) 处作切线并估计其斜率来估算导数在任意 x x x 处的值。例如,对于 x = 5 x = 5 x=5,在图中的点 P P P 处作切线,估计其斜率约为 $ \frac{3}{2} $,因此 f ′ ( 5 ) ≈ 1.5 f'(5) \approx 1.5 f(5)1.5。这样我们就能在 f ′ f' f 的图形上绘制点 P ′ ( 5 , 1.5 ) P'(5, 1.5) P(5,1.5)(函数 f f f 的图形斜率成为 f ′ f' f 图形上的 y y y 值)。重复此过程得到图2(b)所示的图形。注意,在 A A A B B B C C C 处的切线水平,因此导数在这些点的值为0, f ′ f' f 的图形在这些点穿过 x x x 轴。在 A A A B B B 之间,切线斜率为正,因此 f ′ ( x ) f'(x) f(x) 为正;在 B B B C C C 之间,切线斜率为负,因此 f ′ ( x ) f'(x) f(x) 为负。
在这里插入图片描述
例二:已知 f ( x ) = x 3 − x f(x) = x^3 - x f(x)=x3x,求 f ′ ( x ) f'(x) f(x)
lim ⁡ h → 0 [ f ( x + h ) − f ( x ) ] h = lim ⁡ h → 0 [ ( ( x + h ) 3 − ( x + h ) ) − ( x 3 − x ) ] h = lim ⁡ h → 0 [ x 3 + 3 x 2 h + 3 x h 2 + h 3 − x 3 − x ] h = lim ⁡ h → 0 [ 3 x 2 h + 3 x h 2 + h 3 − h ] h = lim ⁡ h → 0 ( 3 x 2 + 3 x h + h 2 − 1 ) = 3 x 2 − 1 \begin{align*} \lim_{h \to 0}\frac{[f(x + h) - f(x)]}{h} &= \lim_{h \to 0} \frac{[((x + h)^3 - (x + h)) - (x^3 - x)]}{h} \\ &= \lim_{h \to 0} \frac{[x^3 + 3x^2h + 3xh^2 + h^3 - x^3 - x]}{h} \\ & = \lim_{h \to 0} \frac{[3x^2h + 3xh^2 + h^3 - h]}{h} \\ &= \lim_{h \to 0} (3x^2 + 3xh + h^2 - 1) \\ &= 3x^2 - 1\end{align*} h0limh[f(x+h)f(x)]=h0limh[((x+h)3(x+h))(x3x)]=h0limh[x3+3x2h+3xh2+h3x3x]=h0limh[3x2h+3xh2+h3h]=h0lim(3x2+3xh+h21)=3x21

其他符号

导数的一些常见替代符号如下:
f ′ ( x ) = y ′ = d y d x = d f d x = d d x f ( x ) = D f ( x ) = D x f ( x ) f'(x) = y' = \frac{dy}{dx} = \frac{df}{dx} = \frac{d}{dx}f(x) = D f(x) = D_x f(x) f(x)=y=dxdy=dxdf=dxdf(x)=Df(x)=Dxf(x)

符号 D D D d y d x \frac{dy}{dx} dxdy被称为微分算子,因为它们表示微分运算,即计算导数的过程。由莱布尼茨引入的符号 d y d x \frac{dy}{dx} dxdy,不应被视为一个比值;它只是 f ′ ( x ) f'(x) f(x)的同义词。

我们可以用莱布尼茨符号重新写出导数的定义形式:

d y d x = lim ⁡ Δ x → 0 Δ y Δ x \frac{dy}{dx} = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} dxdy=Δx0limΔxΔy

如果我们想在特定数值 a a a处用莱布尼茨符号表示导数 d y d x \frac{dy}{dx} dxdy的值,我们使用符号:
d y d x ∣ x = a 或 d y d x ∣ x = a \left. \frac{dy}{dx} \right|_{x=a} \quad \text{或} \quad \frac{dy}{dx}\bigg|_{x=a} dxdy x=adxdy x=a

这与 f ′ ( a ) f'(a) f(a)同义。竖线表示“在此处求值”。

定义:如果 f ′ ( a ) f'(a) f(a)存在,那么函数 f f f a a a处可导。如果 f ′ ( x ) f'(x) f(x)在区间内的每个数处都存在,那么函数在开区间 ( a , b ) (a, b) (a,b)【或 ( a , ∞ ) (a, \infty) (a,) ( − ∞ , a ) (-\infty, a) (,a) ( − ∞ , ∞ ) (-\infty, \infty) (,)上可导。

例三:求函数 f ( x ) = ∣ x ∣ f(x) = |x| f(x)=x可导的区间。


\qquad 如果 x > 0 x > 0 x>0,则 ∣ x ∣ = x |x| = x x=x,我们可以选择足够小的 h h h,使得 x + h > 0 x + h > 0 x+h>0,因此 ∣ x + h ∣ = x + h |x + h| = x + h x+h=x+h。因此,对于 x > 0 x > 0 x>0,我们有

f ′ ( x ) = lim ⁡ h → 0 ∣ x + h ∣ − ∣ x ∣ h = lim ⁡ h → 0 ( x + h ) − x h = lim ⁡ h → 0 h h = lim ⁡ h → 0 1 = 1 f'(x) = \lim_{h \to 0} \frac{|x + h| - |x|}{h} = \lim_{h \to 0} \frac{(x + h) - x}{h} = \lim_{h \to 0} \frac{h}{h} = \lim_{h \to 0} 1 = 1 f(x)=h0limhx+hx=h0limh(x+h)x=h0limhh=h0lim1=1

所以 f f f 在任何 x > 0 x > 0 x>0 处都可导。

\qquad 类似地,对于 x < 0 x < 0 x<0,我们有 ∣ x ∣ = − x |x| = -x x=x,并且 h h h 可以选得足够小,使得 x + h < 0 x + h < 0 x+h<0,因此 ∣ x + h ∣ = − ( x + h ) |x + h| = -(x + h) x+h=(x+h)。因此,对于 x < 0 x < 0 x<0,我们有

f ′ ( x ) = lim ⁡ h → 0 ∣ x + h ∣ − ∣ x ∣ h = lim ⁡ h → 0 − ( x + h ) − ( − x ) h = lim ⁡ h → 0 − h h = lim ⁡ h → 0 ( − 1 ) = − 1 f'(x) = \lim_{h \to 0} \frac{|x + h| - |x|}{h} = \lim_{h \to 0} \frac{-(x + h) - (-x)}{h} = \lim_{h \to 0} \frac{-h}{h} = \lim_{h \to 0} (-1) = -1 f(x)=h0limhx+hx=h0limh(x+h)(x)=h0limhh=h0lim(1)=1

所以 f f f 在任何 x < 0 x < 0 x<0 处都可导。

\qquad 对于 x = 0 x = 0 x=0,我们需要研究

f ′ ( 0 ) = lim ⁡ h → 0 f ( 0 + h ) − f ( 0 ) h = lim ⁡ h → 0 ∣ 0 + h ∣ − ∣ 0 ∣ h = lim ⁡ h → 0 ∣ h ∣ h f'(0) = \lim_{h \to 0} \frac{f(0 + h) - f(0)}{h} = \lim_{h \to 0} \frac{|0 + h| - |0|}{h} = \lim_{h \to 0} \frac{|h|}{h} f(0)=h0limhf(0+h)f(0)=h0limh∣0+h∣0∣=h0limhh

是否存在。

让我们分别计算左极限和右极限:

lim ⁡ h → 0 + ∣ h ∣ h = lim ⁡ h → 0 + h h = lim ⁡ h → 0 + 1 = 1 \lim_{h \to 0^+} \frac{|h|}{h} = \lim_{h \to 0^+} \frac{h}{h} = \lim_{h \to 0^+} 1 = 1 h0+limhh=h0+limhh=h0+lim1=1

lim ⁡ h → 0 − ∣ h ∣ h = lim ⁡ h → 0 − − h h = lim ⁡ h → 0 − ( − 1 ) = − 1 \lim_{h \to 0^-} \frac{|h|}{h} = \lim_{h \to 0^-} \frac{-h}{h} = \lim_{h \to 0^-} (-1) = -1 h0limhh=h0limhh=h0lim(1)=1

由于这些极限不同,所以 f ′ ( 0 ) f'(0) f(0) 不存在。因此, f f f 在除了 0 0 0 以外的所有 x x x 处都可导。

f ′ f' f 的公式如下:

f ′ ( x ) = { 1 如果  x > 0 − 1 如果  x < 0 f'(x) = \begin{cases} 1 & \text{如果 } x > 0 \\ -1 & \text{如果 } x < 0 \end{cases} f(x)={11如果 x>0如果 x<0

f ′ ( 0 ) f'(0) f(0) 不存在这一事实在几何上反映为曲线 y = ∣ x ∣ y = |x| y=x ( 0 , 0 ) (0, 0) (0,0) 处没有切线【如图所示】。
在这里插入图片描述
定理:如果 f f f a a a处可导,那么 f f f a a a处连续。
证明
为了证明 f f f a a a 处是连续的,我们必须表明 lim ⁡ x → a f ( x ) = f ( a ) \lim_{x \to a} f(x) = f(a) limxaf(x)=f(a)。我们通过证明 f ( x ) − f ( a ) f(x) - f(a) f(x)f(a) 的差趋近于 0 来做到这一点。

给定的信息是 f f f a a a 处可导,即

f ′ ( a ) = lim ⁡ x → a f ( x ) − f ( a ) x − a f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} f(a)=xalimxaf(x)f(a)

存在。为了连接已知和未知,我们将 f ( x ) − f ( a ) f(x) - f(a) f(x)f(a) 除以 x − a x - a xa 并乘以 x − a x - a xa(当 x ≠ a x \neq a x=a 时可以这样做):

f ( x ) − f ( a ) = f ( x ) − f ( a ) x − a ⋅ ( x − a ) f(x) - f(a) = \frac{f(x) - f(a)}{x - a} \cdot (x - a) f(x)f(a)=xaf(x)f(a)(xa)

因此,我们可以写成:

lim ⁡ x → a ( f ( x ) − f ( a ) ) = lim ⁡ x → a ( f ( x ) − f ( a ) x − a ⋅ ( x − a ) ) = lim ⁡ x → a f ( x ) − f ( a ) x − a ⋅ lim ⁡ x → a ( x − a ) = f ′ ( a ) ⋅ 0 = 0 \begin{align*}\lim_{x \to a} (f(x) - f(a)) &= \lim_{x \to a} \left( \frac{f(x) - f(a)}{x - a} \cdot (x - a) \right) \\ &= \lim_{x \to a} \frac{f(x) - f(a)}{x - a} \cdot \lim_{x \to a} (x - a) \\ &= f'(a) \cdot 0 = 0\end{align*} xalim(f(x)f(a))=xalim(xaf(x)f(a)(xa))=xalimxaf(x)f(a)xalim(xa)=f(a)0=0

为了使用我们刚才证明的内容,我们从 f ( x ) f(x) f(x) 开始并加上和减去 f ( a ) f(a) f(a)

lim ⁡ x → a f ( x ) = lim ⁡ x → a ( f ( a ) + ( f ( x ) − f ( a ) ) ) = lim ⁡ x → a f ( a ) + lim ⁡ x → a ( f ( x ) − f ( a ) ) = f ( a ) + 0 = f ( a ) \begin{align*}\lim_{x \to a} f(x) &= \lim_{x \to a} \left( f(a) + (f(x) - f(a)) \right) \\ &= \lim_{x \to a} f(a) + \lim_{x \to a} (f(x) - f(a)) \\ &= f(a) + 0 = f(a)\end{align*} xalimf(x)=xalim(f(a)+(f(x)f(a)))=xalimf(a)+xalim(f(x)f(a))=f(a)+0=f(a)

因此, f f f a a a 处是连续的。

注意:定理的逆命题是错误的;也就是说,有些函数是连续的,但不可微。例如,函数 f = ∣ x ∣ f= |x| f=x 0 0 0处连续,因为
lim ⁡ x → 0 f ( x ) = lim ⁡ x → 0 ∣ x ∣ = 0 = f ( 0 ) \lim_{x \to 0}f(x) = \lim_{x \to 0}|x| = 0 = f(0) x0limf(x)=x0limx=0=f(0)

函数如何会不可导?

一般来说,如果函数 f f f 的图形上有一个“角”或“折点”,那么 f f f 的图形在该点没有切线,并且 f f f 在那里不可导。

定理给出了函数没有导数的另一种情况。它指出,如果 f f f a a a 处不连续,那么 f f f a a a 处不可导。因此,在任何不连续点(例如跳跃不连续点), f f f 都是不可导的。

第三种可能性是当 x = a x = a x=a 时,曲线有一条垂直的切线;也就是说, f f f a a a 处是连续的,并且

lim ⁡ x → a ∣ f ′ ( x ) ∣ = ∞ \lim_{x \to a} |f'(x)| = \infty xalimf(x)=

这意味着当 x → a x \to a xa 时,切线变得越来越陡峭【如图所示】。
在这里插入图片描述
图形计算器或计算机提供了另一种观察可微性的方法。如果 f f f a a a处可微,那么当我们向点 ( a , f ( a ) ) (a, f(a)) (a,f(a))放大时,图形越来越像一条线。而无论如何放大另一个图形,我们都无法消除尖点或角。在这里插入图片描述

高阶导数

导数函数 f ′ f' f自身也有导数,写作 f ′ ′ f'' f′′,称为二阶导数。使用莱布尼茨符号表示为:
d d x ( d y d x ) = d 2 y d x 2 \frac{d}{dx}\quad(\frac{dy}{dx}) = \frac{d^2y}{dx^2} dxd(dxdy)=dx2d2y

例四:已知 f ( x ) = x 3 − x f(x) = x^3 - x f(x)=x3x,求 f ′ ′ ( x ) f''(x) f′′(x)


在例二中,我们发现一阶导数是 f ′ ( x ) = 3 x 2 − 1 f'(x) = 3x^2 - 1 f(x)=3x21。所以二阶导数是

f ′ ′ ( x ) = ( f ′ ) ′ ( x ) = lim ⁡ h → 0 f ′ ( x + h ) − f ′ ( x ) h = lim ⁡ h → 0 3 ( x + h ) 2 − 1 − ( 3 x 2 − 1 ) h = lim ⁡ h → 0 3 ( x 2 + 2 x h + h 2 ) − 3 x 2 h = lim ⁡ h → 0 6 x h + 3 h 2 h = lim ⁡ h → 0 ( 6 x + 3 h ) = 6 x \begin{align*}f''(x) = (f')'(x) &= \lim_{h \to 0} \frac{f'(x + h) - f'(x)}{h} \\ &= \lim_{h \to 0} \frac{3(x + h)^2 - 1 - (3x^2 - 1)}{h} \\ &= \lim_{h \to 0} \frac{3(x^2 + 2xh + h^2) - 3x^2}{h} \\ &= \lim_{h \to 0} \frac{6xh + 3h^2}{h} \\ &= \lim_{h \to 0} (6x + 3h) = 6x\end{align*} f′′(x)=(f)(x)=h0limhf(x+h)f(x)=h0limh3(x+h)21(3x21)=h0limh3(x2+2xh+h2)3x2=h0limh6xh+3h2=h0lim(6x+3h)=6x

f f f f ′ f' f f ′ ′ f'' f′′ 的图形如图所示。
在这里插入图片描述

一般来说,我们可以将二阶导数解释为变化率的变化率。最熟悉的例子是加速度,我们定义如下:

如果 s = s ( t ) s = s(t) s=s(t) 是一个沿直线运动的物体的位置函数,我们知道它的一阶导数表示物体的速度 v ( t ) v(t) v(t) 作为时间的函数:

v ( t ) = s ′ ( t ) = d s d t v(t) = s'(t) = \frac{ds}{dt} v(t)=s(t)=dtds

速度相对于时间的瞬时变化率称为物体的加速度 a ( t ) a(t) a(t)。因此,加速度函数是速度函数的导数,因此是位置函数的二阶导数:

a ( t ) = v ′ ( t ) = s ′ ′ ( t ) a(t) = v'(t) = s''(t) a(t)=v(t)=s′′(t)

或者,用莱布尼茨符号表示,

a = d v d t = d 2 s d t 2 a = \frac{dv}{dt} = \frac{d^2 s}{dt^2} a=dtdv=dt2d2s

加速度是你在汽车加速或减速时所感觉到的速度变化。

三阶导数 f ′ ′ ′ f''' f′′′ 是二阶导数的导数: f ′ ′ ′ = ( f ′ ′ ) ′ f''' = (f'')' f′′′=(f′′)。因此, f ′ ′ ′ ( x ) f'''(x) f′′′(x) 可以解释为曲线 y = f ′ ′ ( x ) y = f''(x) y=f′′(x) 的斜率或 f ′ ′ ( x ) f''(x) f′′(x) 的变化率。如果 y = f ( x ) y = f(x) y=f(x),那么三阶导数的替代符号是

y ′ ′ ′ = f ′ ′ ′ ( x ) = d d x ( d 2 y d x 2 ) = d 3 y d x 3 y''' = f'''(x) = \frac{d}{dx} \left( \frac{d^2 y}{dx^2} \right) = \frac{d^3 y}{dx^3} y′′′=f′′′(x)=dxd(dx2d2y)=dx3d3y

我们还可以在函数是物体沿直线运动的位置函数 s = s ( t ) s = s(t) s=s(t) 的情况下,对三阶导数进行物理解释。因为 s ′ ′ ′ = ( s ′ ′ ) ′ = a ′ s''' = (s'')' = a' s′′′=(s′′)=a,位置函数的三阶导数是加速度函数的导数,称为加加速度jerk):

j = d a d t = d 3 s d t 3 j = \frac{da}{dt} = \frac{d^3 s}{dt^3} j=dtda=dt3d3s

因此,加加速度 j j j 是加速度的变化率。这个名称很贴切,因为较大的加加速度意味着加速度的突然变化,类似于车辆的突然运动。

微分过程可以继续。四阶导数 f ( 4 ) f^{(4)} f(4) 通常表示为 f ( 4 ) f^{(4)} f(4)。一般来说, f f f 的第 n n n 阶导数表示为 f ( n ) f^{(n)} f(n),通过对 f f f 进行 n n n 次微分得到。如果 y = f ( x ) y = f(x) y=f(x),我们写成

y ( n ) = f ( n ) ( x ) = d n y d x n y^{(n)} = f^{(n)}(x) = \frac{d^n y}{dx^n} y(n)=f(n)(x)=dxndny

练习题

  1. 如果对于定义域中的所有 x x x,函数 f f f 满足 f ( − x ) = f ( x ) f(-x) = f(x) f(x)=f(x),则称 f f f 为偶函数;如果 f ( − x ) = − f ( x ) f(-x) = -f(x) f(x)=f(x),则称 f f f 为奇函数。证明以下每一个结论。
    (a) 偶函数的导数是奇函数。
    (b) 奇函数的导数是偶函数。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值