线性代数:零空间维度等于自由变量个数的原因

本文通过具体矩阵示例,解析了零空间的概念及其维度为何等于自由变量个数的原因。通过将自由变量的不同取值视为在特定维度空间中的点,解释了如何通过这些点形成零空间。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

以下展开的论述均以下图的矩阵为例

               

②上述矩阵特征: 2个主变量,2个自由变量
③该矩阵零空间的构成:
形式化的理解:在AX=0的条件下,对2个自由变量任意赋值,求得对应主变量的值,从而形成了零空间中的一个向量。在对2个自由变量分别赋完所有可能的值后,得到的向量的集合,形成了“零空间”
④零空间的特征以及零空间维度等于自由变量个数的原因
(1)对2个自由变量赋值,可以理解为在一个xoy平面上任取一点。其中,点的坐标分别对应两个不同的自由变量的取值。使2个自由变量分别赋完所有可能的值,等价于取遍整个xoy平面。
(2)当2个自由变量的值取遍整个平面,并分别求出相应主变量的值所组成的向量的集合(AX=0条件下),形成了零空间
(3)欲完全覆盖整个二维平面,需要两个线性无关的向量作为基(这里是使矩阵各列线性组合为0的两组特解,也即2个自由变量随机取值求得主变量后所形成的向量),然后对它们进行线性组合,即可得到一个二维平面。该二维平面涵盖了自由变量所有可能的取值,所以该平面为“零空间”
⑤总结
   本例中,有2个自由变量,所以在一个无限大的平面上承载了2个自由变量所有可能的取值。同理,如果有三个自由变量,则需要一个三维的空间来承载。以此类推,当有n个自由变量时,则需要一个n维的空间来承载n个自由变量的所有取值。而AX=0的所有解的集合生成了整个零空间,n个自由变量的所有可能取值对应了AX=0的所有解。所以零空间的维度等于自由变量的个数。


评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值