设计师福音,免费插画分享

设计需求上需要插画,不会怎么办?

项目非常急,没时间绘制怎么办?

今天就为大家分享私藏宝库!有了他们,麻麻再也不用担心我没有插画素材啦!

重点:免费,可商用,不用署名!

下面进入宝库吧!

▲https://www.drawkit.io

进入网站后选择Free illustration,即可获得免费商用的插画图库

这套图形插画有二十多个角色,人物线条比较简洁干练,而且有Al、SVG和EPS三种格式,便于编辑和调整。通过简单的组合就可以得到一个不错的画面。

▲https://stubborn.fun

这个就比较有意思了,一个免费的插画生成工具,这套工具可以使用Sketch和Figma进行自定义设计。

也可以直接下载PNG或SVG用其他的软件随意组合,并且拥有不同的角色和背景可以用来自定义调整,等于有了一个模型小人可以自己搭配,非常人性化

▲https://mixkit.co/free-stock-art/

这个网站插画有多种风格,但只提供PNG格式的下载,所以可延展性不是很方便。

▲https://www.humaaans.com

又是一个换装达人,在这里可以用不同的人物角色、不同的服装、发型、动作造型以及各种场景。可塑性非常高,可以根据需求快速地定制出适用的插画场景。

另外还可选择下载Sketch、XD等插件,也可直接下载压缩包使用svg或png来修改。

值得一说的是,这里的png或者svg都是身体各部位分开的,简直不要太好用!

▲https://manypixels.co/gallery/

这套插画来自Manypixels团队,里面包含了各种物体和人物的插画,并且可以直接在网站上在线调整插画整体的色彩,非常方便。

▲https://opendoodles.com

粗线条、色彩抢眼的画风,可以在网页上修改颜色等。并且提供 SVG 和 PNG 格式的插画下载,偶尔也会有 GIF 格式的。

OpenDoodles 另外一个特别良心的特点就是提供完整的插画包的下载。

▲https://icons8.com/ouch

Ouch 本身提供 20 种不同风格的插画供你选择,并且可以免费使用。不过这个网站有的图片需要署名,有些则不需要,用的时候需要看清楚许可证哦。

▲https://icons8.com/vector-creator

这个网站就厉害了,做插画拼场景就跟玩转QQ秀一样简单!

在这个网站中各种素材不但可以随意调整颜色,而且可以让各种元素随意组合。简直是插画素材中的机皇!不过非注册会员组合好后只能下载png哦,虽然如此,做一般的项目也足够了。

▲https://undraw.co/illustrations

这个也是可以在网页上即时改变颜色,然后下载应用的。不过这个网页上的素材还不是很多,以后可能会慢慢好起来。

▲https://isoflat.com

这个网站的素材也是各种风格都有,但大多数都是以2.5D风格为主。可以根据自己的需要选择啦。

▲https://fresh-folk.com

由国外插画家Leni Kauffman创立,主要放自己所作的一些作品。这些插画作品是可以免费商用的,且不用署名,风格大多都是噪点风。在网站中输入自己的邮箱即可获得打包的插画素材。

▲https://www.pixeltrue.com/free-illustrations

这些免费的SVG插图Lottie动画可免费用于个人和商业用途。以上就是给大家整理的白嫖插画素材网站啦。

想要学习或者提升设计可以来AAA教育

<think>好的,用户想了解RCAB模块在图像超分辨率任务中的作用和原理。首先,我需要回忆一下RCAB的相关知识。RCAB全称是Residual Channel Attention Block,应该是在残差块的基础上加入了通道注意力机制。这通常用于提升超分辨率模型的性能。 记得残差块(Residual Block)在ResNet中被广泛使用,通过跳跃连接缓解梯度消失的问题,帮助训练更深的网络。而通道注意力机制,比如SENet中的Squeeze-and-Excitation模块,能够自动学习各个通道的重要性,增强有用的特征,抑制不重要的。RCAB可能结合了这两者。 接下来,需要确认RCAB的具体结构。根据常见的设计,RCAB可能包含多个卷积层,然后是通道注意力模块,最后通过残差连接相加。这样可以在提取特征的同时,动态调整各通道的权重,让网络更关注重要的信息。 在超分辨率任务中,RCAB的作用应该是增强高频细节的恢复,比如边缘和纹理,这对于提升图像清晰度至关重要。同时,通道注意力机制能有效利用通道间的依赖关系,优化特征表达,从而提升重建质量。 应用场景方面,RCAB可能被用于如EDSR、RCAN等超分辨率模型中。这些模型通常堆叠多个RCAB模块,通过深层的网络结构逐步恢复高分辨率图像。特别是在处理大倍数超分辨率(如4x、8x)时,RCAB能帮助保持细节,减少模糊。 还需要考虑RCAB的优势。比如,通过残差学习简化了优化过程,而通道注意力则增强了特征的区分能力。这可能使得模型在计算资源有限的情况下仍能保持高效,同时提升性能。 需要验证这些信息是否正确。参考用户提供的资料,引用[1]提到多尺度卷积和特征融合,引用[2]提到信息交互和注意力机制。虽然没有直接提到RCAB,但通道注意力属于注意力机制的一种,符合引用中的信息。因此可以推断RCAB的应用场景这些模块类似,用于特征提取和优化。 总结来说,RCAB的作用是通过残差结构和通道注意力机制,有效提取并优化特征,提升超分辨率重建的质量。应用场景包括各种基于深度学习的超分辨率模型,特别是在需要恢复细节和高效利用特征时。</think>RCAB(Residual Channel Attention Block)模块在图像超分辨率任务中主要用于**增强特征表达能力并优化高频细节恢复**,其核心原理是通过残差学习通道注意力机制的结合,动态调整特征通道的重要性权重。 ### 作用原理分步说明: 1. **残差学习框架** RCAB基于残差块(Residual Block)设计,包含两个卷积层和激活函数,通过跳跃连接(Skip Connection)将输入输出相加。这种方式缓解了梯度消失问题,支持更深的网络训练,公式为: $$F(x) = H(x) + x$$ 其中$H(x)$为残差函数,$x$为输入特征。 2. **通道注意力机制** 在残差块后引入通道注意力模块(Channel Attention Module),通过全局平均池化(Global Average Pooling)统计通道特征,并利用全连接层生成通道权重: $$w_c = \sigma(W_2 \cdot \delta(W_1 \cdot \text{GAP}(x)))$$ 其中$\sigma$为Sigmoid函数,$\delta$为ReLU,$W_1$和$W_2$为全连接层参数。最终输出特征为各通道加权后的结果: $$x' = w_c \cdot x$$ 该机制使网络自动关注对重建更重要的特征通道[^1]。 3. **多尺度特征融合** RCAB常多尺度特征提取模块结合(如引用[1]中提到的多尺度卷积层),通过不同感受野的卷积核捕获低频和高频信息,再利用通道注意力筛选关键特征,减少冗余计算,提升重建效率。 ### 应用场景 - **单图像超分辨率(SISR)**:如RCAN(Residual Channel Attention Networks)模型,通过堆叠多个RCAB模块恢复高分辨率图像的细节[^2]。 - **多模态超分辨率融合**:在红外可见光图像融合任务中,RCAB用于增强跨模态特征的表征能力,保留边缘和纹理信息[^1]。 - **轻量超分辨率网络**:由于通道注意力可抑制无效特征,RCAB在减少计算量的同时保持性能,适用于移动端部署。 ### 示例模型结构 ```python class RCAB(nn.Module): def __init__(self, channels): super().__init__() self.conv1 = nn.Conv2d(channels, channels, 3, padding=1) self.conv2 = nn.Conv2d(channels, channels, 3, padding=1) self.ca = ChannelAttention(channels) # 通道注意力模块 def forward(self, x): res = self.conv1(x) res = F.relu(res) res = self.conv2(res) res = self.ca(res) # 通道加权 return x + res # 残差连接 ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值