全覆盖路径规划算法(CCPP)

1.基本概念

  • CCPP: Complete Coverage Path Planning
  • CCPP需解决的关键问题
    • 遍历工作区域内除障碍物以外的全部区域
    • 在遍历过程中有效避开所有障碍物
    • 在遍历过程中要尽量避免路径重复,缩短移动距离
  • CCPP技术指标
    • 区域覆盖率
    • 路径重复率
    • 总行程
  • 死区:是指它的周边相邻区域,或者是边界,或者是障碍物,或者是已覆盖过的区域
  • 全覆盖路径规划问题本质:在栅格地图中,全覆盖路径规划问题就演变为寻找机器人的下一个移动位置,只有准确找出了该位置,才能使机器人自主规划出一条切实可行的无碰撞且重复率低的移动路径。
  • 路径规划分类(根据机器人的运动目标)
    • 点到点的路径规划
    • 完全遍历路径规划
  • 路径规划方法分类(根据实现方法)
    • 传统经典算法
      • 基于图的方法
      • 基于栅格的方法
      • 势场法
      • 数学编程法
    • 智能方法
      • 横糊方法
      • 神经网络方法
      • 遗传算法
  • 路径搜索
    • 路径表达:以环境模型中的结点序列组成或由直线段序列组成
    • 路径平滑:根据机器人运动学或动力学约束,形成机器人可跟踪执行的运动轨迹
      • 运动学约束:路径轨迹的一阶导数应连续
      • 动力学约束:路径轨迹的二阶导数应连续

1.1 基于栅格的方法

  • 将区域划分成栅格,搜索连通栅格表示路径。优点:易于建模、存储、处理、更新与分析
    • Dijkstra算法:通过枚举求解两点间距离最短
    • A*算法:通代价评估加快搜索

1.2 基于遗传算法的路径规划

  • 遗传算法:是计算数学中用于解决最优化的搜索算法,是进化算法的一种
  • 遗传算法通常实现为一种计算机模拟
    • 对于一个最优化问题,一定数量的候选解(称为个体)的抽像表示(称为染色体)的种群向更好的解进化。传纺上,解用二进制表法(即0和1的串),但也可以用其他表示方法。进化从完全随机个体的种群开始,之后一代一代发生。在每一代中,整个种群的适应度被评价,从当前种群中随机地选择多个个体(基于他们的适应度),通过自然选择和突变产生新的生命种群,此种群在算法的下一次迭代中成为当前种群。
  • 衍生算法: 退火遗传算法、改进遗传算法等

1.2 CCPP方法分类

1.2.1 行为覆盖法:随机碰撞法

  • 原理:机器人根据简单的移动行为,尝试性地覆盖工作区域,如果遇到障碍物,则执行对应的转向命令
  • 缺点:行为全覆盖算法工作效率低,路径规划策略过于简单,面对复杂地形机器人经常无法逃离死区

1.2.2 区域分割法

  • 原理:为了使机器人能够逃离死区,同时减少算法的计算量,Jin 等 提出一种基于时空信息的全局导航与局部导航组合的算法。
  • 优点
    • 该算法一方面能够通过局部计算代替不必要的全局计算,减少了实时决策时局部最优导航的计算量;
    • 另一方面通过分层的方式使机器人能够逃离死区。
  • 缺点
    • 局部与全局的转换过程中,当周围没有未覆盖的区域时,机器人需要扩大邻近区域的面积来寻找未覆盖区域,这将导致覆盖效率的降低,尤其是当未覆盖区域距离机器人较远时

1.2.3 神经网络法

  • 原理:利用神经网络的自学习、并行性等特性,增强机器人的“智能”,提高覆盖效率。受神经网络结构与栅格地图单元类似的启发,加拿大学者 S. X.Yang等提出一种基于生物启发神经网络的移动机器人全覆盖路径规划算法,将需要全覆盖的二维栅格地图单元与生物启发神经网络的神经元一一对应起来,机器人实现全覆盖的实时路径规划是由神经元的活性值和机器人的上一位置产生的。该算法完全根据栅格地图单元的性质 (未搜索单元、已搜索单元还是障碍物),决定神经元的输入,直接计算神经元的活性值,不存在神经网络学习过程
  • 优点:算法实时性好,同时可以自动避障与逃离死区。
  • 缺点:但是基于生物启发神经网络的全覆盖算法计算量大,同时此种方法中神经网络模型的衰减率等参数没有最优值,在实现算法时只能通过反复实验确定,参数的设定存在人为不确定因素,从而影响其在线应用

参考:移动机器人路径规划[PPT]

### 回答1: 以下是基于Python的遗传算法实现CCPP路径覆盖问题的代码: ```python import random # 遗传算法的参数设置 POPULATION_SIZE = 100 # 种群大小 MUTATION_RATE = 0.1 # 变异率 CROSSOVER_RATE = 0.8 # 交叉率 GENERATIONS = 50 # 迭代次数 # CCPP路径覆盖问题的输入数据 n = 10 # 点的数量 m = 20 # 边的数量 edges = [(1, 2), (1, 3), (2, 3), (2, 4), (3, 4), (3, 5), (4, 6), (5, 6), (5, 7), (6, 8), (7, 8), (7, 9), (8, 9), (8, 10), (9, 10), (10, 1), (10, 2), (10, 3), (10, 4)] # 初始化种群 def initialize_population(population_size, n): population = [] for i in range(population_size): individual = [random.randint(0, 1) for _ in range(n * (n - 1))] population.append(individual) return population # 计算适应度函数 def fitness(individual): # 将个体转换为路径矩阵 matrix = [[0] * n for _ in range(n)] for i in range(n): for j in range(n): if i != j: index = i * (n - 1) + j - (1 if j > i else 0) matrix[i][j] = individual[index] # 判断是否满足路径覆盖 for i in range(n): for j in range(n): if i != j: if not matrix[i][j]: for k in range(n): if i != k and j != k: if matrix[i][k] and matrix[k][j]: matrix[i][j] = 1 break if not matrix[i][j]: return 0 # 计算路径长度 length = 0 for i in range(m): edge = edges[i] length += matrix[edge[0] - 1][edge[1] - 1] # 返回适应度值 return 1 / length # 选择操作 def select(population, fitnesses): total_fitness = sum(fitnesses) probabilities = [fitness / total_fitness for fitness in fitnesses] selected_population = [] for _ in range(len(population)): index = 0 r = random.random() while r > 0: r -= probabilities[index] index += 1 selected_population.append(population[index - 1]) return selected_population # 交叉操作 def crossover(population): crossover_population = [] for i in range(len(population)): if random.random() < CROSSOVER_RATE: j = random.randint(0, len(population) - 1) parent1 = population[i] parent2 = population[j] crossover_point = random.randint(0, len(parent1) - 1) child1 = parent1[: ### 回答2: CCPP路径覆盖是一种测试方法,它旨在确保软件系统中的所有路径都得到测试覆盖。而Python遗传算法是一种通过模拟生物遗传进化过程来优化问题解决方法的算法。 在CCPP路径覆盖中,我们需要对系统的每个路径进行测试,以确保对于每个可能的输入或条件组合,系统都能正确执行并达到预期结果。这要求我们能够穷举所有可能的路径,并为每个路径设计相应的测试用例。 而Python遗传算法是一种基于自然界生物进化过程的优化算法。它首先通过初始化一组随机的个体(解决问题的候选解),然后通过选择、交叉、变异等操作模拟生物遗传进化过程,不断优化个体的适应度,最终得到一个接近最优解的个体。 将CCPP路径覆盖与Python遗传算法结合起来,可以使用遗传算法来优化测试用例的设计。我们可以将每个路径看作一个个体,路径覆盖的准确性可以作为个体的适应度指标。通过遗传算法的选择、交叉、变异操作来演进测试用例,可以逐步改进测试用例集,使其更好地覆盖系统的路径。这样,我们可以在保证覆盖率的前提下,减少测试时间和成本。 总结而言,CCPP路径覆盖Python遗传算法代码是一种结合了路径覆盖测试方法和遗传算法优化的代码实现方式。通过这种方式,我们可以更好地设计和改进测试用例,从而提高软件质量和测试效率。 ### 回答3: CCPP路径覆盖是一种测试策略,旨在确保软件系统中的所有路径都能被测试到。Python遗传算法是一种通过模拟自然进化过程来求解最优解的算法。 为了实现CCPP路径覆盖,可以结合Python遗传算法的特点和功能来设计代码。首先,需要分析系统中的所有路径,并将其转化为遗传算法中的问题。这可以通过将每个路径作为个体、每个节点作为基因来实现。 接下来,需要定义适应度函数,用于评估每个个体的质量。在CCPP路径覆盖的情况下,适应度函数可以根据每个个体所覆盖的路径数量来评判。路径覆盖面,适应度越高。适应度函数的设计应考虑到最大化路径覆盖,同时在遗传算法中引入一定的随机性以保证收敛性和多样性。 然后,需要确定遗传算法的参数,如种群大小、交叉率和变异率等。合理的参数设计可以提高算法的收敛速度和搜索效果。 最后,根据以上内容,编写Python代码进行实现。代码的框架可以包括种群初始化、适应度评估、选择、交叉、变异等操作。通过迭代不断优化个体的适应度,最终可以找到覆盖所有路径的最优解。 总之,通过使用Python遗传算法,结合CCPP路径覆盖的要求,可以设计出能够有效测试软件系统中所有路径的代码。这种方法可以提高软件的质量和可靠性,并帮助发现潜在的问题和缺陷。
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值