SLAM (simultaneous localization and mapping),也称为CML (Concurrent Mapping and Localization), 即时定位与地图构建,或并发建图与定位。
问题可以描述为:将一个机器人放入未知环境中的未知位置,是否有办法让机器人一边逐步描绘出此环境完全的地图,同时一边决定机器人应该往哪个方向行进。
例如扫地机器人就是一个很典型的SLAM问题,所谓完全的地图(a consistent map)是指不受障碍行进到房间可进入的每个角落。
SLAM最早由Smith、Self和Cheeseman于1988年提出。 由于其重要的理论与应用价值,被很多学者认为是实现真正全自主移动机器人的关键。
SLAM是一个完整的系统,由许多个分支模块组成。主要为三个部分:定位(Localization)、建图(Mapping)、路径规划(Path Planning)。
根据对环境信息的把握程度可把路径规划划分为
-
基于先验完全信息的全局路径规划
-
基于传感器信息的局部路径规划。
其中,从获取障碍物信息是静态或是动态的角度看,全局路径规划属于静态规划(又称离线规划),局部路径规划属于动态规划(又称在线规划)。
全局路径规划需要掌握所有的环境信息,根据环境地图的所有信息进行路径规划;
局部路径规划只需要由传感器实时采集环境信息,了解环境地图信息,然后确定出所在地图的位置及其局部的障碍物分布情况,从而可以选出从当前结点到某一子目标结点的最优路径。
局部路径规划和全局路径规划并没有本质区别。前者只是把全局路径规划的环境考虑得更复杂一些,即环境是动态的。很多适用于全局路径规划的方法经过改进都可以用于局部路径规划:而适合于局部路径规划的方法都可以适用于全局路径规划。
根据所研究环境的信息特点,路径规划还可分为离散域范围内的路径规划问题和连续域范围内的路径规划问题。离散域范围内的路径规划问题属于一维静态优化问题,相当于环境信息简化后的路线优化问题;而连续域范围内的路径规划问题则是连续性多维动态环境下的问题。
清洁机器人是自动化控制在人类现代生活中的体现之一,其融合了运动控制技术、信息处理技术以及人工智能等多学科的知识。其关键技术包括传感检测技术、路径规划技术、自动回充技术、电源技术等。其中,路径规划技术是清洁机器人实现智能化的关键指标,同时也是清洁机器人研究的热点问题。清洁机器人的路径规划技术要求是遍历工作区域中除障碍物以外的所有区域。
清洁机器人全覆盖路径规划与点对点的路径规划在意义上完全不同,点对点的路径规划旨在寻找一条起始点到最终点无碰撞最优路径,是由点到线的规划。而全覆盖路径规划则是由点到线,再由线到面的路径规划。全覆盖路径规划主要包括以下四个内容:
① 清洁机器人走遍工作区域除障碍物以外的全部地方;
② 在清洁机器人行走过程中能自主避开所有的障碍物;
③ 在遍历过程中保证最小的重复率;
④ 在全覆盖路径规划过程中,清洁机器人能量消耗和时间消耗最小。
主要是阅读参考了一些硕士毕业论文,和一些技术类的博客,例如http://biz.ingdan.com/knowledge/details-1774.html。