差分算子

本文深入探讨了差分算子的性质,包括常值函数的性质、线性性、Leibniz规则以及差分算子与微分算子的关系。通过极限,展示了差分算子如何在连续极限下转化为微分算子,揭示了离散与连续计算之间的联系。
摘要由CSDN通过智能技术生成

定义在数域 K K 上对函数作用的差分算子:

( Δ f ) ( x ) = f ( x + Δ x ) f ( x )

其中 Δx Δ x 为差分步长,例如:整数 Δx=1 Δ x = 1 步长下, Δf(x)=f(x+1)f(x) Δ f ( x ) = f ( x + 1 ) − f ( x )

Property 1 f(x)=cK f ( x ) = c ∈ K 是常值函数,则 Δf0 Δ f ≡ 0
证明:
Δf(x)=f(x+Δx)f(x)=cc=0. Δ f ( x ) = f ( x + Δ x ) − f ( x ) = c − c = 0.
Property 2 f,gI(K),a,bK,Δ(af+bg)=aΔf+bΔg. f , g ∈ I ( K ) , a , b ∈ K , 则 Δ ( a f + b g ) = a Δ f + b Δ g .
证明:
Δ(af

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值