讲解一些复变函数的基础概念

1 篇文章 0 订阅
1 篇文章 0 订阅

可以对实数域做一个推广复数域,于是获得一个比较好的性质.我们把多项式函数的 f ( x ) = x 2 + 1 f(x)=x^2+1 f(x)=x2+1的根 i = − 1 i=\sqrt{-1} i=1 添加入实数域,得知 C = R [ i ] ≅ R 2 C=R[i]\cong R^2 C=R[i]R2.
在复数域上的加减乘除是很简单的,并且由欧拉公式得到的 e i θ e^{i\theta} eiθ也能够应用到这个域上.
现在讨论复数域上的极限.

Theorem  \text{Theorem } Theorem 已知 x n , y n ⩾ 0 x_n,y_n\geqslant 0 xn,yn0,则:
lim ⁡ ‾ n → ∞ x n ⋅ y n ⩽ lim ⁡ ‾ n → ∞ x n ⋅ lim ⁡ ‾ n → ∞ y n lim ⁡ ‾ n → ∞ x n ⋅ y n ⩾ lim ⁡ ‾ n → ∞ x n ⋅ lim ⁡ ‾ n → ∞ y n \underset{n\to \infty}{\overline{\lim}}x_n\cdot y_n\leqslant \underset{n\to \infty}{\overline{\lim}}x_n\cdot\underset{n\to \infty}{\overline{\lim}}y_n\\ \underset{n\to \infty}{\underline{\lim}}x_n\cdot y_n\geqslant \underset{n\to \infty}{\underline{\lim}}x_n\cdot \underset{n\to \infty}{\underline{\lim}}y_n nlimxnynnlimxnnlimynnlimxnynnlimxnnlimyn
考虑两个函数的聚点特性即可.

Theorem  \text{Theorem } Theorem 已知 x n > 0 x_n\gt 0 xn>0,则:
lim ⁡ ‾ n → ∞ x n ⋅ lim ⁡ ‾ n → ∞ 1 x n = 1 \underset{n\to \infty}{\overline{\lim}}x_n\cdot\underset{n\to \infty}{\underline{\lim}}\frac{1}{x_n}=1 nlimxnnlimxn1=1
考虑 lim ⁡ ‾ n → ∞ x n = x \underset{n\to \infty}{\overline{\lim}}x_n=x nlimxn=x即可.
当然,复数域上的数列也可以定义有界,依然定义欧几里得上的模有界即可.

Theorem(Bolzano-Weierstrass)  \text{Theorem(Bolzano-Weierstrass) } Theorem(Bolzano-Weierstrass) 有界的无穷序列至少有一个聚点.
利用反证法可以证明.
PS:关键是利用有界和无限这两个特性,一个提供了半径,一个提供了数量. \text{PS:关键是利用有界和无限这两个特性,一个提供了半径,一个提供了数量.} PS:关键是利用有界和无限这两个特性,一个提供了半径,一个提供了数量.

Theorem  \text{Theorem } Theorem 若序列有极限,则序列有且仅有一个聚点.
略.

Theorem (Cauchy审敛原则) ∀ ϵ &gt; 0 , ∃ N &gt; 0 , s . t . ∀ p ∈ N + 时 , ∣ a N + p − a N ∣ &lt; ϵ ⇔ { a n } 极 限 存 在 . \text{Theorem (Cauchy审敛原则)}\forall \epsilon &gt;0,\exists N&gt;0,s.t. \forall p\in N_+时,|a_{N+p}-a_{N}|&lt;\epsilon\Leftrightarrow \{a_n\}极限存在. Theorem (Cauchy审敛原则)ϵ>0,N>0,s.t.pN+,aN+paN<ϵ{an}.

Definition  \text{Definition } Definition 设区域 G ⊂ C G\subset C GC,若对于任意 z ∈ G , 有 1 个 ( 单 值 函 数 ) 或 多 个 ( 多 值 函 数 ) w 与 之 对 应 z\in G,有1个(单值函数)或多个(多值函数)w与之对应 zG,1()()w,称 w = f ( z ) w=f(z) w=f(z) z z z的复变函数. f f f的定义域是 G G G,值域是 f ( G ) . f(G). f(G).
可以发现 w = f ( z ) = u ( x , y ) + i v ( x , y ) = ( u , v ) = ( f r , f i ) w=f(z)=u(x,y)+iv(x,y)=(u,v)=(f_r,f_i) w=f(z)=u(x,y)+iv(x,y)=(u,v)=(fr,fi),其中 u , v u,v u,v均是 R 2 R^2 R2上的实函数,于是自然能够知道有界的概念就是从 R 2 R^2 R2上函数推广而来,自然极限、连续、一致连续、可导和可微等也能从从 R 2 R^2 R2上函数推广而来.

Theorem  \text{Theorem } Theorem 若一个无界序列在有限远处没有聚点,则无界序列有且只有一个聚点,且收敛于无穷远点.

Equation(Cauchy-Riemann)  ∂ u ∂ x = ∂ v ∂ y , ∂ u ∂ y + ∂ v ∂ x = 0. \text{Equation(Cauchy-Riemann) }\displaystyle \frac{\partial u}{\partial x}=\frac{\partial v}{\partial y},\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}=0. Equation(Cauchy-Riemann) xu=yv,yu+xv=0.
考虑一个在实轴和复轴上f导数的极限可以得到.

Theorem  \text{Theorem } Theorem 若复变函数 f f f的实部函数和虚部函数均可微,且满足柯西黎曼条件,那么 f f f可导.

Definition  \text{Definition } Definition 如果 f f f在区域内处处可导,那么称 f f f在区域上具有解析性,称 f f f是区域上的解析( analytic,holomorphic,homodromic,monogenic,regular,synetic \text{analytic,holomorphic,homodromic,monogenic,regular,synetic} analytic,holomorphic,homodromic,monogenic,regular,synetic)函数.
Equation(Laplace)  ∂ 2 u ∂ x 2 + ∂ 2 u ∂ y 2 = 0 , ∂ 2 v ∂ x 2 + ∂ 2 v ∂ y 2 = 0. \text{Equation(Laplace) }\displaystyle \frac{\partial ^2u}{\partial x^2}+\frac{\partial ^2u}{\partial y^2}=0,\frac{\partial ^2v}{\partial x^2}+\frac{\partial ^2v}{\partial y^2}=0. Equation(Laplace) x22u+y22u=0,x22v+y22v=0.
满足这个方程的实函数叫做调和函数.

Definition  \text{Definition } Definition 若函数在某些地方不解析(未定义,不可导),称这些点为奇点.


1.幂函数 f ( z ) = z n : f(z)=z^n: f(z)=zn:
(1) n ∈ N + n\in N_+ nN+时, f f f在全平面解析,若 n ≠ 0 n\neq 0 n̸=0 z = ∞ z=\infty z= f f f的奇点.
(2) n &lt; 0 n&lt;0 n<0时, 1 f \displaystyle \frac{1}{f} f1同(1).自然知道 z = 0 z=0 z=0 f f f的奇点.
(3) f f f的导数同实数情况.
(4)由此推出复平面上的多项式(函数)定义.它在无穷远点不解析.
(5)由此推出有理函数 R ( z ) = P ( z ) Q ( z ) : \displaystyle R(z)=\frac{P(z)}{Q(z)}: R(z)=Q(z)P(z):
( i ) Q ( z ) = 0 (i)Q(z)=0 (i)Q(z)=0时, R ( z ) R(z) R(z)不解析;
( i i ) 若 deg ⁡ P &lt; deg ⁡ Q (ii)若\deg P&lt;\deg Q (ii)degP<degQ,则 R ( z ) R(z) R(z)在无穷远点不解析,否则解析.(?)

2.指数函数 f ( z ) = a z = e z l n a f(z)=a^z=e^{zlna} f(z)=az=ezlna,下面考虑 e z e^z ez.
(1) e z = e x ( cos ⁡ y + i sin ⁡ y ) e^z=e^x(\cos y+i\sin y) ez=ex(cosy+isiny),由此可以理解指数函数的函数图像.
(2) e z e^z ez在无穷远未定义!所以无穷远点是 e z e^z ez
的奇点.
(3) e z e^z ez有周期 2 π i 2\pi i 2πi.
(4) e z e^z ez在全平面有解析, ( e z ) ′ = e z (e^z)&#x27;=e^z (ez)=ez.

3.三角函数,由指数函数可以得到其解析性.
cos ⁡ z = 1 2 ( e i z + e − i z ) , sin ⁡ z = 1 2 i ( e i z − e − i z ) \cos z=\frac{1}{2}(e^{iz}+e^{-iz}),\sin z=\frac{1}{2i}(e^{iz}-e^{-iz}) cosz=21(eiz+eiz),sinz=2i1(eizeiz)
(1)周期是 2 π 2\pi 2π.
(2)由此推出, tan ⁡ z , cot ⁡ z , sec ⁡ z , csc ⁡ z \tan z,\cot z,\sec z,\csc z tanz,cotz,secz,cscz,奇点情况类似有理函数.
4.双曲函数,由指数函数可以得到其解析性.
cosh ⁡ z = 1 2 ( e z + e − z ) , sinh ⁡ z = 1 2 ( e z − e − z ) \cosh z=\frac{1}{2}(e^{z}+e^{-z}),\sinh z=\frac{1}{2}(e^{z}-e^{-z}) coshz=21(ez+ez),sinhz=21(ezez)

这些初等函数全部都是复平面上的单值函数.

5.根式函数,首先讨论平方根式函数 w = f ( z ) = z − a w=f(z)=\sqrt{z-a} w=f(z)=za ,
w = ρ 2 e 2 i φ = r e i θ . w=\rho^2 e^{2i\varphi}=re^{i\theta}. w=ρ2e2iφ=reiθ.
(2) ρ = r , ϕ = θ 2 + n π , n ∈ Z \displaystyle \rho=\sqrt{r},\phi=\frac{\theta}{2}+n\pi,n\in Z ρ=r ,ϕ=2θ+nπ,nZ,故 z − a = ± r e i θ 2 . \displaystyle z-a=\pm \sqrt{r}e^\frac{i\theta}{2}. za=±r e2iθ.
可以发现这是由 z − a z-a za(宗量)辐角多值性导致了z的多值性.
所以准确描述 f f f应当是 ∣ w ∣ = ∣ g ( z ) ∣ , arg ⁡ w = 1 2 arg ⁡ g ( z ) |w|=\sqrt{|g(z)|},\arg w=\frac{1}{2}\arg g(z) w=g(z) ,argw=21argg(z),其中 g ( z ) = z − a g(z)=z-a g(z)=za.

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值