测度论与概率论笔记4:测度空间上的积分(上)

测度空间的积分

接下来我们定义测度空间上的积分,方法还是采用典型方法,需要三步:
第一步:定义非负简单函数的积分
第二步:由于非负可测函数都可由渐升非负简单函数列逼近,由此定义非负可测函数的积分
第三步:将一般可测函数分解为正负部,其积分为正部的积分减去负部的积分
接下来的讨论,如无特别说明,测度空间为 ( X , F , μ ) (X,\mathscr{F},\mu) (X,F,μ) F \mathscr{F} F中的集合称为可测集

非负简单函数的积分

对非负简单函数 f = ∑ k = 1 n c k I E k \displaystyle f=\sum_{k=1}^nc_kI_{E_k} f=k=1nckIEk E 1 , ⋯   , E n E_1,\cdots,E_n E1,,En为两两不交的可测集, X = ⋃ k = 1 n E k \displaystyle X=\bigcup_{k=1}^nE_k X=k=1nEk c 1 , ⋯   , c n c_1,\cdots,c_n c1,,cn为非负实数,定义其积分为 ∫ X f d μ = ∑ k = 1 n c k μ ( E k ) \int_Xfd\mu=\sum_{k=1}^nc_k\mu(E_k) Xfdμ=k=1nckμ(Ek)

  1. 实际上,非负简单函数的表示方法不唯一,因此要证明这一定义是良定义,也就是说,不论表示为何种形式,积分的定义是唯一。
    我们设 f = ∑ k = 1 n c k I E k = ∑ k = 1 m d k I F k \displaystyle f=\sum_{k=1}^nc_kI_{E_k}=\sum_{k=1}^md_kI_{F_k} f=k=1nckIEk=k=1mdkIFk,其中, E 1 , ⋯   , E n E_1,\cdots,E_n E1,,En为两两不交的可测集, F 1 , ⋯   , F m F_1,\cdots,F_m F1,,Fm为两两不交的可测集, X = ⋃ k = 1 n E k = ⋃ k = 1 m F k \displaystyle X=\bigcup_{k=1}^nE_k=\bigcup_{k=1}^m F_k X=k=1nEk=k=1mFk c 1 , ⋯   , c n , d 1 , ⋯   , d m c_1,\cdots,c_n,d_1,\cdots,d_m c1,,cn,d1,,dm都是非负实数。设 I 1 = ∑ k = 1 n c k μ ( E k ) , I 2 = ∑ k = 1 m d k μ ( F k ) \displaystyle I_1=\sum_{k=1}^nc_k\mu(E_k),I_2=\sum_{k=1}^md_k\mu(F_k) I1=k=1nckμ(Ek),I2=k=1mdkμ(Fk)。则 f f f还可以表示为 f = ∑ i = 1 n ∑ j = 1 m c i I E i ∩ F j = ∑ i = 1 n ∑ j = 1 m d j I E i ∩ F j f=\sum_{i=1}^n\sum_{j=1}^mc_iI_{E_i\cap F_j}=\sum_{i=1}^n\sum_{j=1}^md_jI_{E_i\cap F_j} f=i=1nj=1mciIEiFj=i=1nj=1mdjIEiFj这两种方法是同一种表示方法1,在该表示法下的积分为 I 3 = ∑ i = 1 n ∑ j = 1 m c i μ ( E i ∩ F j ) = ∑ i = 1 n ∑ j = 1 m d j μ ( E i ∩ F j ) I_3=\sum_{i=1}^n\sum_{j=1}^mc_i\mu(E_i\cap F_j)=\sum_{i=1}^n\sum_{j=1}^md_j\mu(E_i\cap F_j) I3=i=1nj=1mciμ(EiFj)=i=1nj=1mdjμ(EiFj)2 { E i ∩ F j : i = 1 , 2 , ⋯   , n , j = 1 , 2 , ⋯   , m } \{E_i\cap F_j:i=1,2,\cdots,n,j=1,2,\cdots,m\} {EiFj:i=1,2,,n,j=1,2,,m}是两两不交的可测集,并且 X = ⋃ i = 1 n ⋃ j = 1 m E i ∩ F j \displaystyle X=\bigcup_{i=1}^n\bigcup_{j=1}^mE_i\cap F_j X=i=1nj=1mEiFj,而 I 3 = ∑ i = 1 n ∑ j = 1 m c i μ ( E i ∩ F j ) = ∑ i = 1 n c i ∑ j = 1 m μ ( E i ∩ F j ) = ∑ i = 1 n c i μ ( E i ) = I 1 I_3=\sum_{i=1}^n\sum_{j=1}^mc_i\mu(E_i\cap F_j)=\sum_{i=1}^nc_i\sum_{j=1}^m\mu(E_i\cap F_j)=\sum_{i=1}^nc_i\mu(E_i)=I_1 I3=i=1nj=1mciμ(EiFj)=i=1ncij=1mμ(EiFj)=i=1nciμ(Ei)=I1同理可证 I 3 = I 2 I_3=I_2 I3=I2,故 I 1 = I 2 I_1=I_2 I1=I2

  2. 非负简单函数积分的性质:
    性质1: A A A是可测集,则 ∫ X I A d μ = μ ( A ) \displaystyle\int_X I_Ad\mu=\mu(A) XIAdμ=μ(A)
    性质2: 对任意的非负简单函数 f f f ∫ X f d μ ≥ 0 \displaystyle \int_X fd\mu\ge 0 Xfdμ0
    性质3:(半线性性质) 对任意的非负简单函数 f , g f,g f,g,对任意的非负实数 a , b a,b a,b a f + b g af+bg af+bg也是非负简单函数,并且 ∫ X ( a f + b g ) d μ = a ∫ X f d μ + b ∫ X g d μ \int_X(af+bg)d\mu=a\int_Xfd\mu+b\int_Xgd\mu X(af+bg)dμ=aXfdμ+bXgdμ 性质4:(不等式性质) f , g f,g f,g是非负简单函数, f ≤ g f\le g fg,则 ∫ X f d μ ≤ ∫ X g d μ \int_X fd\mu\le \int_X gd\mu XfdμXgdμ 性质5: { f n } \{f_n\} {fn}是渐升的非负简单函数列, g g g是非负简单函数,并且 g ≤ lim ⁡ n → ∞ f n \displaystyle g\le \lim_{n\to\infty} f_n gnlimfn,则有 ∫ X g d μ ≤ lim ⁡ n → ∞ ∫ X f n d μ \int_Xgd\mu\le\lim_{n\to\infty}\int_X f_nd\mu XgdμnlimXfndμ

非负简单函数性质的证明:仅证明性质3和性质5,性质4的证明思路和性质3类似,而性质1,2是显然的
性质3的证明:设 f = ∑ k = 1 n c k I E k , g = ∑ k = 1 m d k I F k \displaystyle f=\sum_{k=1}^nc_kI_{E_k},g=\sum_{k=1}^md_kI_{F_k} f=k=1nckIEk,g=k=1mdkIFk,其中 E 1 , ⋯   , E n E_1,\cdots,E_n E1,,En为两两不交的可测集, F 1 , ⋯   , F m F_1,\cdots,F_m F1,,Fm为两两不交的可测集,并且 X = ⋃ k = 1 n E k = ⋃ k = 1 m F k \displaystyle X=\bigcup_{k=1}^nE_k=\bigcup_{k=1}^mF_k X=k=1nEk=k=1mFk c 1 , ⋯   , c n , d 1 , ⋯   , d m c_1,\cdots,c_n,d_1,\cdots,d_m c1,,cn,d1,,dm为非负实数,则 a f + b g = ∑ i = 1 n ∑ j = 1 m ( a c i + b d j ) I E i ∩ F j af+bg=\sum_{i=1}^n\sum_{j=1}^m(ac_i+bd_j)I_{E_i\cap F_j} af+bg=i=1nj=1m(aci+bdj)IEiFj ∫ X ( a f + b g ) d μ = ∑ i = 1 n ∑ j = 1 m ( a c i + b d j ) μ ( E i ∩ F j ) = a ∑ i = 1 n ∑ j = 1 m c i μ ( E i ∩ F j ) + b ∑ i = 1 n ∑ j = 1 m d j μ ( E i ∩ F j ) = a ∑ i = 1 n c i ∑ j = 1 m μ ( E i ∩ F j ) + b ∑ j = 1 m d j ∑ i = 1 n μ ( E i ∩ F j ) = a ∑ i = 1 n c i μ ( E i ) + b ∑ j = 1 m d j μ ( F j ) = a ∫ X f d μ + b ∫ X g d μ \begin{aligned} &\int_X(af+bg)d\mu=\sum_{i=1}^n\sum_{j=1}^m(ac_i+bd_j)\mu(E_i\cap F_j)\\ =&a\sum_{i=1}^n\sum_{j=1}^mc_i\mu(E_i\cap F_j)+b\sum_{i=1}^n\sum_{j=1}^md_j\mu(E_i\cap F_j)\\ =&a\sum_{i=1}^nc_i\sum_{j=1}^m\mu(E_i\cap F_j)+b\sum_{j=1}^md_j\sum_{i=1}^n\mu(E_i\cap F_j)\\ =&a\sum_{i=1}^nc_i\mu(E_i)+b\sum_{j=1}^md_j\mu(F_j)\\ =&a\int_X fd\mu+b\int_X g d\mu \end{aligned} ====X(af+bg)dμ=i=1nj=1m(aci+bdj)μ(EiFj)ai=1nj=1mciμ(EiFj)+bi=1nj=1mdjμ(EiFj)ai=1ncij=1mμ(EiFj)+bj=1mdji=1nμ(EiFj)ai=1nciμ(Ei)+bj=1mdjμ(Fj)aXfdμ+bXgdμ性质5的证明: 对于任意的 c ∈ ( 0 , 1 ) c\in (0,1) c(0,1),定义 A n = { f n ≥ c g } B n = { f n < c g } A_n=\{f_n\ge cg\}\\ B_n=\{f_n < cg\} An={fncg}Bn={fn<cg} ∫ X f n d μ = ∫ X f n I A n d μ + ∫ X f n I B n d μ ≥ ∫ X f n I A n d μ \int_X f_nd\mu =\int_Xf_nI_{A_n}d\mu+\int_X f_nI_{B_n}d\mu\ge \int_Xf_nI_{A_n}d\mu Xfndμ=XfnIAndμ+XfnIBndμXfnIAndμ由于 { f n } \{f_n\} {fn}是渐升列,故 E 1 ⊂ E 2 ⊂ E 3 ⊂ ⋯ ⊂ E n ⊂ ⋯ E_1\subset E_2\subset E_3\subset \cdots\subset E_n\subset \cdots E1E2E3En,并且, E n ↑ X E_n\uparrow X EnX,我们证明 ∫ X g I A n d μ ↑ ∫ X g d μ \displaystyle \int_X gI_{A_n}d\mu\uparrow \int_X g d\mu XgIAndμXgdμ,设 g = ∑ k = 1 n c k I E k \displaystyle g=\sum_{k=1}^nc_kI_{E_k} g=k=1nckIEk,其中 E 1 , ⋯   , E n E_1,\cdots,E_n E1,,En为两两不交的可测集,并且 X = ⋃ k = 1 n E k \displaystyle X=\bigcup_{k=1}^n E_k X=k=1nEk c 1 , ⋯   , c n c_1,\cdots,c_n c1,,cn为非负实数,则 g I A n = ∑ k = 1 n c k I E k ∩ A n + 0. I B n gI_{A_n}=\sum_{k=1}^nc_kI_{E_k\cap A_n}+0.I_{B_n} gIAn=k=1nckIEkAn+0.IBn ∫ X g I A n d μ = ∑ k = 1 n c k μ ( E k ∩ A n ) \int_XgI_{A_n}d\mu=\sum_{k=1}^n c_k \mu(E_k\cap A_n) XgIAndμ=k=1nckμ(EkAn)由测度的下连续性,就有
lim ⁡ n → ∞ ∫ X g I A n d μ = lim ⁡ n → ∞ ∑ k = 1 n c k μ ( E k ∩ A n ) = ∑ k = 1 n c k lim ⁡ n → ∞ μ ( E k ∩ A n ) = ∑ k = 1 n c k μ ( E k ) = ∫ X g d μ \begin{aligned} &\lim_{n\to\infty}\int_XgI_{A_n}d\mu=\lim_{n\to\infty}\sum_{k=1}^n c_k \mu(E_k\cap A_n)\\=&\sum_{k=1}^n c_k\lim_{n\to\infty}\mu(E_k\cap A_n)=\sum_{k=1}^nc_k\mu(E_k)=\int_Xgd\mu \end{aligned} =nlimXgIAndμ=nlimk=1nckμ(EkAn)k=1ncknlimμ(EkAn)=k=1nckμ(Ek)=Xgdμ并且 ∫ X f n I A n d μ ≥ c ∫ X g I A n d μ \int_Xf_nI_{A_n}d\mu\ge c\int_XgI_{A_n}d\mu XfnIAndμcXgIAndμ ∫ X f n d μ ≥ c ∫ X g I A n d μ \int_X f_nd\mu\ge c\int_XgI_{A_n}d\mu XfndμcXgIAndμ两边令 n → ∞ n\to\infty n,有 lim ⁡ n → ∞ ∫ X f n d μ ≥ c ∫ X g d μ \lim_{n\to\infty}\int_X f_nd\mu\ge c\int_Xgd\mu nlimXfndμcXgdμ再令 c → 1 c\to 1 c1,就有 lim ⁡ n → ∞ ∫ X f n d μ ≥ ∫ X g d μ \lim_{n\to\infty}\int_X f_nd\mu\ge \int_Xgd\mu nlimXfndμXgdμ

非负可测函数的积分

由简单函数逼近定理,对任意非负可测函数 f f f,存在渐升的非负简单函数列 { f n } \{f_n\} {fn} f n ↑ f f_n\uparrow f fnf,则我们可以定义非负可测函数 f f f的积分为 ∫ X f d μ = lim ⁡ n → ∞ ∫ X f n d μ \int_Xfd\mu=\lim_{n\to\infty}\int_Xf_nd\mu Xfdμ=nlimXfndμ

  1. 该定义是良定义:所谓的良定义是指:无论选取何种渐升的非负简单函数列 { f n } \{f_n\} {fn},只要 f n ↑ f f_n\uparrow f fnf,所得到的积分值是相等的。对两个非负渐升的简单函数列 { f n } \{f_n\} {fn} { g n } \{g_n\} {gn},并且处处成立 lim ⁡ n → ∞ f n = lim ⁡ n → ∞ g n \displaystyle \lim_{n\to\infty}f_n=\lim_{n\to\infty}g_n nlimfn=nlimgn,那么对任意的 m ≥ 1 m\ge 1 m1,都有 f m ≤ lim ⁡ n → ∞ g n g m ≤ lim ⁡ n → ∞ f n f_m\le \lim_{n\to\infty} g_n\\ g_m\le \lim_{n\to\infty} f_n fmnlimgngmnlimfn因此,由非负简单函数积分的性质,就有 ∫ X f m d μ ≤ lim ⁡ n → ∞ ∫ X g n d μ ∫ X g m d μ ≤ lim ⁡ n → ∞ ∫ X f n d μ \int_Xf_md\mu\le\lim_{n\to\infty}\int_X g_nd\mu\\ \int_Xg_md\mu\le \lim_{n\to\infty}\int_X f_nd\mu XfmdμnlimXgndμXgmdμnlimXfndμ两边令 m → ∞ m\to\infty m,就有 lim ⁡ m → ∞ ∫ X f m d μ ≤ lim ⁡ n → ∞ ∫ X g n d μ lim ⁡ m → ∞ ∫ X g m d μ ≤ lim ⁡ n → ∞ ∫ X f n d μ \lim_{m\to\infty}\int_X f_md\mu\le \lim_{n\to\infty}\int_Xg_nd\mu\\ \lim_{m\to\infty}\int_X g_md\mu\le \lim_{n\to\infty}\int_X f_nd\mu mlimXfmdμnlimXgndμmlimXgmdμnlimXfndμ这就得到 lim ⁡ n → ∞ ∫ X f n d μ = lim ⁡ n → ∞ ∫ X g n d μ \lim_{n\to\infty}\int_X f_nd\mu=\lim_{n\to\infty}\int_X g_nd\mu nlimXfndμ=nlimXgndμ
  2. 由1,非负可测函数的积分与所选取的渐升非负简单函数列无关,故计算积分值时,选取任意的渐升非负简单函数列都是可以的。如果选取的是我们证明简单函数逼近定理时的渐升非负简单函数列,那么就有 ∫ X f d μ = lim ⁡ n → ∞ [ ∑ k = 1 n 2 n − 1 k 2 n μ { k 2 n ≤ f < k + 1 2 n } + n μ { f ≥ n } ] \int_Xfd\mu=\lim_{n\to\infty}\left[\sum_{k=1}^{n2^n-1}\frac{k}{2^n}\mu\{\frac{k}{2^n}\le f < \frac{k+1}{2^n}\}+n\mu\{f\ge n\}\right] Xfdμ=nlim[k=1n2n12nkμ{2nkf<2nk+1}+nμ{fn}]这里选取的非负简单函数列为 { h n } \{h_n\} {hn},其中 h n = ∑ k = 0 n . 2 n − 1 k 2 n I { k 2 n ≤ f < k + 1 2 n } + n I { f ≥ n } h_n=\sum_{k=0}^{n.2^n-1}\frac{k}{2^n}I_{\{\frac{k}{2^n}\le f < \frac{k+1}{2^n}\}}+nI_{\{f\ge n\}} hn=k=0n.2n12nkI{2nkf<2nk+1}+nI{fn}后面沿用这个记号
  3. 该定义还有一个等价定义 ∫ X f d μ = sup ⁡ { ∫ X g d μ : g ≤ f , g 是 非 负 简 单 函 数 } \int_Xfd\mu=\sup\{\int_Xgd\mu:g\le f,g是非负简单函数\} Xfdμ=sup{Xgdμ:gf,g}

证:我们记 I = ∫ X f d μ = sup ⁡ { ∫ X g d μ : g ≤ f , g 是 非 负 简 单 函 数 } I= \int_Xfd\mu=\sup\{\int_Xgd\mu:g\le f,g是非负简单函数\} I=Xfdμ=sup{Xgdμ:gf,g}任取一列渐升的非负简单函数列 { f n } \{f_n\} {fn},并且 f n ↑ f f_n\uparrow f fnf,则 f n ≤ f f_n\le f fnf,由 I I I的定义,就有 ∫ X f n d μ ≤ I \int_X f_nd\mu\le I XfndμI n → ∞ n\to\infty n,就有 ∫ X f d μ ≤ I \int_X fd\mu \le I XfdμI反之,我们分两种情况讨论:
情形1:当 I = + ∞ I=+\infty I=+时,存在非负简单函数列 { f n } \{f_n\} {fn} f n ≤ f f_n\le f fnf,并且 lim ⁡ n → ∞ ∫ X f n d μ = + ∞ \lim_{n\to\infty}\int_X f_nd\mu=+\infty nlimXfndμ=+ g n = max ⁡ { f 1 , f 2 , ⋯   , f n , h n } g_n=\max\{f_1,f_2,\cdots,f_n,h_n\} gn=max{f1,f2,,fn,hn},容易验证 g n g_n gn也是非负简单函数,并且 { g n } \{g_n\} {gn}是渐升的,同时,由于 f 1 ≤ f , f 2 ≤ f , ⋯   , f n ≤ f , h n ≤ f f_1\le f,f_2\le f,\cdots,f_n\le f,h_n\le f f1f,f2f,,fnf,hnf g n ≤ f g_n\le f gnf,而 g n ≥ h n g_n\ge h_n gnhn,由夹逼准则, lim ⁡ n → ∞ g n = f \displaystyle \lim_{n\to\infty}g_n= f nlimgn=f,则 lim ⁡ n → ∞ ∫ X g n d μ = + ∞ = ∫ X f d μ \lim_{n\to\infty}\int_X g_nd\mu=+\infty=\int_X fd\mu nlimXgndμ=+=Xfdμ情形2:当 I < + ∞ I<+\infty I<+时,存在非负简单函数列 { f n } \{f_n\} {fn} f n ≤ f f_n\le f fnf,并且 ∫ X f n d μ > I − 1 n \int_X f_nd\mu>I-\frac{1}{n} Xfndμ>In1如同情形1一样构造 { g n } \{g_n\} {gn},则 I − 1 n < ∫ X f n d μ ≤ ∫ X g n d μ ≤ I I-\frac{1}{n}<\int_Xf_nd\mu\le\int_X g_nd\mu\le I In1<XfndμXgndμI由夹逼准则 lim ⁡ n → ∞ ∫ X g n d μ = ∫ X f d μ = I \lim_{n\to\infty}\int_Xg_nd\mu=\int_X fd\mu=I nlimXgndμ=Xfdμ=I

  1. f f f是一个非负简单函数,则 ∫ X f d μ \displaystyle\int_Xfd\mu Xfdμ是良定义的,也就是说,无论采取上节的定义,还是本节的定义,得到的积分值是一致的,这由注3容易验证,这里省略
  2. 非负可测函数积分的性质:
    性质1(非负性) f f f是非负可测函数,则 ∫ X f d μ ≥ 0 \displaystyle\int_X fd\mu\ge 0 Xfdμ0
    性质2(线性性质) f , g f,g f,g是两个非负可测函数, a , b a,b a,b是两个非负实数,则 ∫ X ( a f + b g ) d μ = a ∫ X f d μ + b ∫ X g d μ \int_X(af+bg)d\mu=a\int_Xfd\mu+b\int_Xgd\mu X(af+bg)dμ=aXfdμ+bXgdμ性质3(不等式性质) f , g f,g f,g是两个非负可测函数,并且处处成立 f ≤ g f\le g fg,则 ∫ X f d μ ≤ ∫ X g d μ \int_X fd\mu\le \int_X gd\mu XfdμXgdμ

一般可测函数的积分

对于一般的可测函数,我们定义其积分为 ∫ X f d μ = ∫ X f + d μ − ∫ X f − d μ \int_Xfd\mu=\int_X f^+d\mu-\int_X f^-d\mu Xfdμ=Xf+dμXfdμ当然前提是要这个式子有意义,这个式子有意义的充要条件是 min ⁡ { ∫ X f + d μ , ∫ X f − d μ } < + ∞ \min\{\int_X f^+d\mu,\int_X f^-d\mu\}<+\infty min{Xf+dμ,Xfdμ}<+此时我们称 f f f积分存在,如果 max ⁡ { ∫ X f + d μ , ∫ X f − d μ } < + ∞ \max\{\int_X f^+d\mu,\int_X f^-d\mu\}<+\infty max{Xf+dμ,Xfdμ}<+则这个积分还是实数,此时我们称 f f f可积

  1. 任意可测集上的积分:如果 A A A是可测集, f f f是可测函数,则如果 f I A fI_A fIA积分存在或可积,就称 f f f A A A上积分存在或可积,积分值记为 ∫ A f d μ = ∫ X f I A d μ \int_Afd\mu=\int_X fI_Ad\mu Afdμ=XfIAdμ
  2. 几乎处处定义的可测函数的积分: f f f虽然不是可测函数,但其与可测函数 h h h几乎处处相等,如果 h h h积分存在或可积,我们称 f f f积分存在或可积,积分值为 ∫ X h d μ \int_X hd\mu Xhdμ,后面我们将证明这一定义是良定义

积分的性质

定理4.1(可积的充要条件) f f f为可测函数.
(1) 如果 f f f的积分存在,则 ∣ ∫ X f d μ ∣ ≤ ∫ X ∣ f ∣ d μ \displaystyle\left|\int_Xfd\mu\right|\le \int_X|f|d\mu XfdμXfdμ
(2) f f f可积当且仅当 ∣ f ∣ |f| f可积
(3) 如果 f f f可积,则 f f f几乎处处有限

证:
(1)如果 ∫ X f d μ = + ∞ \displaystyle\int_Xfd\mu=+\infty Xfdμ=+,则 ∫ X f + d μ = + ∞ , ∫ X f − d μ < + ∞ \displaystyle\int_Xf^+d\mu=+\infty,\int_Xf^-d\mu<+\infty Xf+dμ=+,Xfdμ<+,因此 ∫ X ∣ f ∣ d μ = ∫ X f + d μ + ∫ X f − d μ = + ∞ \int_X|f|d\mu=\int_Xf^+d\mu+\int_Xf^-d\mu=+\infty Xfdμ=Xf+dμ+Xfdμ=+ ∣ ∫ X f d μ ∣ = ∫ X ∣ f ∣ d μ \left|\int_Xfd\mu\right|=\int_X|f|d\mu Xfdμ=Xfdμ ∫ X f d μ = − ∞ \displaystyle\int_Xfd\mu=-\infty Xfdμ=时也是类似的,当 f f f可积时,由三角不等式 ∣ ∫ X f d μ ∣ = ∣ ∫ X f + d μ − ∫ X f − d μ ∣ ≤ ∫ X f + d μ + ∫ X f − d μ = ∫ X ∣ f ∣ d μ \left|\int_Xfd\mu\right|=\left|\int_Xf^+d\mu-\int_Xf^-d\mu\right|\le\int_Xf^+d\mu+\int_Xf^-d\mu=\int_X|f|d\mu Xfdμ=Xf+dμXfdμXf+dμ+Xfdμ=Xfdμ(2) f f f可积的充要条件是 ∫ X f + d μ < + ∞ , ∫ X f − d μ < + ∞ \int_Xf^+d\mu<+\infty,\int_Xf^-d\mu<+\infty Xf+dμ<+,Xfdμ<+ ∫ X ∣ f ∣ d μ = ∫ X f + d μ + ∫ X f − d μ \int_X|f|d\mu=\int_Xf^+d\mu+\int_Xf^-d\mu Xfdμ=Xf+dμ+Xfdμ故由此不难得出 f f f可积当且仅当 ∣ f ∣ |f| f可积
(3)如果 f f f非负, f f f不几乎处处有限,那么 μ { f = + ∞ } = μ ( ⋂ n = 1 ∞ { f ≥ n } ) = δ > 0 \displaystyle\mu\{f=+\infty\}=\mu\left(\bigcap_{n=1}^\infty\{f\ge n\}\right)=\delta>0 μ{f=+}=μ(n=1{fn})=δ>0,那么由单调性,对任意的 n ≥ 1 n\ge 1 n1,都有 μ { f ≥ n } ≥ μ { f = + ∞ } = δ \mu\{f\ge n\}\ge \mu\{f=+\infty\}=\delta μ{fn}μ{f=+}=δ因此 ∫ X f d μ = lim ⁡ n → ∞ [ ∑ k = 1 n . 2 n − 1 k n . 2 n μ { k n . 2 n ≤ f < k + 1 n . 2 n } + n μ { f ≥ n } ] ≥ lim ⁡ n → ∞ n μ { f ≥ n } ≥ δ lim ⁡ n → ∞ n = + ∞ \begin{aligned} &\int_Xfd\mu=\lim_{n\to\infty}\left[\sum_{k=1}^{n.2^n-1}\frac{k}{n.2^n}\mu\{\frac{k}{n.2^n}\le f<\frac{k+1}{n.2^n}\}+n\mu\{f\ge n\}\right]\\\ge&\lim_{n\to\infty}n\mu\{f\ge n\}\ge \delta\lim_{n\to\infty}n=+\infty \end{aligned} Xfdμ=nlim[k=1n.2n1n.2nkμ{n.2nkf<n.2nk+1}+nμ{fn}]nlimnμ{fn}δnlimn=+ f f f不可积,因此,如果 f f f可积,则 f f f几乎处处有限
对一般的可测函数, f f f可积的充要条件是 ∣ f ∣ |f| f可积,则 f f f可积, ∣ f ∣ |f| f几乎处处有限, f f f也几乎处处有限

定理4.2 f , g f,g f,g是可测函数.
(1)对任意的可测集 A A A,并且 μ ( A ) = 0 \mu(A)=0 μ(A)=0,有 ∫ A f d μ = 0 \int_Afd\mu=0 Afdμ=0(2)如果 f , g f,g f,g积分存在且 f ≥ g a . e f\ge g \quad a.e fga.e,则 ∫ X f d μ ≥ ∫ X g d μ \displaystyle\int_Xfd\mu\ge\int_Xgd\mu XfdμXgdμ
(3)如果 f , g f,g f,g几乎处处相等,那么只要其中一个积分存在,另一个积分也存在而且两个积分值相等

证:
(1) 如果 f f f A A A上非负,对任意的非负简单函数 g ≤ f I A g\le fI_A gfIA,则 g g g几乎处处为0,显然 ∫ X g d μ = 0 \displaystyle\int_Xgd\mu=0 Xgdμ=0,故 ∫ A f d μ = 0 \displaystyle\int_Afd\mu=0 Afdμ=0,对一般的可测函数 f f f f + I A , f − I A f^+I_A,f^-I_A f+IA,fIA也几乎处处为0,由此可得 ∫ X ( f I A ) + d μ = ∫ X f + I A d μ = 0 , ∫ X ( f I A ) − d μ = ∫ X f − I A d μ = 0 \displaystyle\int_X(fI_A)^+d\mu=\int_Xf^+I_Ad\mu=0,\int_X(fI_A)^-d\mu=\int_Xf^-I_Ad\mu=0 X(fIA)+dμ=Xf+IAdμ=0,X(fIA)dμ=XfIAdμ=0,故 ∫ A f d μ = ∫ X f I A d μ = 0 \displaystyle\int_Afd\mu=\int_XfI_Ad\mu=0 Afdμ=XfIAdμ=0
(2) 如果 f , g f,g f,g非负, f ≥ g a . e f\ge g \quad a.e fga.e,则令 A = { f ≥ g } B = { f < g } A=\{f\ge g\}\\ B=\{f<g\} A={fg}B={f<g} μ ( B ) = 0 \mu(B)=0 μ(B)=0,并且 ∫ X f d μ = ∫ X f I A d μ + ∫ X f I B d μ = ∫ X f I A d μ ∫ X g d μ = ∫ X g I A d μ + ∫ X g I B d μ = ∫ X g I A d μ \int_Xfd\mu=\int_XfI_Ad\mu+\int_XfI_Bd\mu=\int_XfI_Ad\mu\\ \int_Xgd\mu=\int_XgI_Ad\mu+\int_XgI_Bd\mu=\int_XgI_Ad\mu Xfdμ=XfIAdμ+XfIBdμ=XfIAdμXgdμ=XgIAdμ+XgIBdμ=XgIAdμ f I A ≥ g I B fI_A\ge gI_B fIAgIB ∫ X f d μ = ∫ X f I A d μ ≥ ∫ X g I A d μ = ∫ X g d μ \int_Xfd\mu=\int_XfI_Ad\mu\ge \int_XgI_Ad\mu=\int_Xgd\mu Xfdμ=XfIAdμXgIAdμ=Xgdμ f , g f,g f,g为一般可测函数时, f ≥ g a . e . f\ge g \quad a.e. fga.e.,则不难推出 f + ≥ g + , f − ≤ g − a . e . f^+\ge g^+,f^-\le g^-\quad a.e. f+g+,fga.e.,就有 ∫ X f + d μ ≤ ∫ X g + d μ ∫ X f − d μ ≥ ∫ X g − d μ \int_Xf^+d\mu\le \int_Xg^+d\mu\\ \int_Xf^-d\mu\ge \int_Xg^-d\mu Xf+dμXg+dμXfdμXgdμ就可以证得结论
(3) f = g a . e . f=g\quad a.e. f=ga.e.等价于 f ≥ g , f ≤ g a . e f\ge g,f\le g\quad a.e fg,fga.e,再套用结论(2)即可

f f f为几乎处处定义的可测函数,那么设 f = g = h f=g=h f=g=h g , h g,h g,h为可测函数,那么 g , h g,h g,h几乎处处相等,那么应该同时积分存在或可积,并且积分值相等,那么对 f f f的积分定义是良定义,也就是说,不与所选择的可测函数有关。定理4.2还说明了:如果在一个零测集上改变可测函数的值,不改变积分的存在性,不改变可积性,不改变积分的值。

定理4.3 f f f是可测函数,如果 f f f几乎处处为0,则 ∫ X f d μ = 0 \displaystyle\int_Xfd\mu=0 Xfdμ=0,反正,如果 f ≥ 0 a . e . f\ge 0\quad a.e. f0a.e. ∫ X f d μ = 0 \displaystyle\int_Xfd\mu=0 Xfdμ=0,则 f = 0 a . e f=0 \quad a.e f=0a.e

证:
(1) 如果 f = 0 a . e . f = 0 \quad a.e. f=0a.e.,则 f = f I { f ≠ 0 } f=fI_{\{f\neq 0\}} f=fI{f=0},而 μ { f ≠ 0 } = 0 \mu\{f\neq 0\}=0 μ{f=0}=0,因此 ∫ X f d μ = ∫ X f I { f ≠ 0 } d μ = 0 \int_X fd\mu=\int_X fI_{\{f\neq 0\}}d\mu=0 Xfdμ=XfI{f=0}dμ=0(2) 如果 f ≥ 0 f\ge 0 f0处处成立, ∫ X f d μ = 0 \displaystyle\int_Xfd\mu=0 Xfdμ=0,如果 f f f不几乎处处为0,则 μ { f ≠ 0 } = μ ( ⋃ n = 1 ∞ { f ≥ 1 n } ) > 0 \mu\{f\neq 0\}=\mu\left(\bigcup_{n=1}^\infty\{f\ge\frac{1}{n}\}\right)>0 μ{f=0}=μ(n=1{fn1})>0则存在正整数 n 0 n_0 n0,有 μ { f ≥ 1 n 0 } > 0 \mu\{f\ge\frac{1}{n_0}\}>0 μ{fn01}>0 f ≥ 1 n 0 I { f ≥ 1 n 0 } f\ge \frac{1}{n_0}I_{\{f\ge \frac{1}{n_0}\}} fn01I{fn01}因此 ∫ X f d μ ≥ μ { f ≥ 1 n 0 } n 0 > 0 \int_Xfd\mu\ge\frac{\mu\{f\ge \frac{1}{n_0}\}}{n_0}>0 Xfdμn0μ{fn01}>0矛盾,因此 f = 0 a . e . f=0\quad a.e. f=0a.e.
而如果 f ≥ 0 a . e f\ge 0\quad a.e f0a.e,并且 ∫ X f d μ = 0 \displaystyle \int_X fd\mu=0 Xfdμ=0,则令 A = { f ≥ 0 } B = { f < 0 } A=\{f\ge 0\}\\ B=\{f<0\} A={f0}B={f<0}由于 μ ( B ) = 0 \mu(B)=0 μ(B)=0,就有 ∫ X f d μ = ∫ X f I A d μ + ∫ X f I B d μ = ∫ X f I A d μ = 0 \int_Xfd\mu=\int_XfI_Ad\mu+\int_XfI_Bd\mu=\int_XfI_Ad\mu=0 Xfdμ=XfIAdμ+XfIBdμ=XfIAdμ=0 f I A ≥ 0 fI_A\ge 0 fIA0处处成立,因此, f I A = 0 , f = f I A a . e . fI_A=0,f=fI_A\quad a.e. fIA=0,f=fIAa.e.,故 f = 0 a . e f=0\quad a.e f=0a.e

定理4.4 f , g f,g f,g是积分存在的可测函数.
(1)对任意的 a ∈ R a\in R aR a f af af的积分存在,并且 ∫ X ( a f ) d μ = a ∫ X f d μ \displaystyle\int_X (af)d\mu=a\int_Xfd\mu X(af)dμ=aXfdμ
(2)如果 ∫ X f d μ + ∫ X g d μ \displaystyle\int_Xfd\mu+\int_Xgd\mu Xfdμ+Xgdμ有意义,那么 f + g f+g f+g为几乎处处定义的可测函数,积分存在,并且 ∫ X ( f + g ) d μ = ∫ X f d μ + ∫ X g d μ \int_X(f+g)d\mu=\int_Xfd\mu+\int_Xgd\mu X(f+g)dμ=Xfdμ+Xgdμ

证:
(1) a = 0 a=0 a=0时, a f = 0 af=0 af=0,则结论是显然的,我们就 a > 0 a>0 a>0的情况给出证明, a < 0 a<0 a<0情况下的证明是类似的。
a f > 0 af>0 af>0等价于 f > 0 f>0 f>0,故 ( a f ) + = a f + , ( a f ) − = a f − (af)^+=af^+,(af)^-=af^- (af)+=af+,(af)=af再利用非负可测函数积分的性质即可证得(1)
(2)
①先证明 f + g f+g f+g几乎处处有定义,分三种情况讨论:
情形1 ∫ X f d μ = + ∞ , ∫ X g d μ > − ∞ \displaystyle \int_Xfd\mu=+\infty,\int_Xgd\mu>-\infty Xfdμ=+,Xgdμ>,则 ∫ X f + d μ = + ∞ , ∫ X f − d μ < + ∞ , ∫ X g − d μ < + ∞ \int_Xf^+d\mu=+\infty,\int_Xf^-d\mu<+\infty,\int_Xg^-d\mu<+\infty Xf+dμ=+,Xfdμ<+,Xgdμ<+ ∫ X f − d μ < + ∞ \displaystyle\int_Xf^-d\mu<+\infty Xfdμ<+ f > − ∞ a . e . f>-\infty\quad a.e. f>a.e.,由 ∫ X g − d μ < + ∞ \displaystyle\int_Xg^-d\mu<+\infty Xgdμ<+ g > − ∞ a . e . g>-\infty\quad a.e. g>a.e. f + g f+g f+g无意义有两种情况:一是 f = + ∞ , g = − ∞ f=+\infty,g=-\infty f=+,g=,二是 f = − ∞ , g = + ∞ f=-\infty,g=+\infty f=,g=+,令 A = { f = + ∞ , g = − ∞ } ∪ { f = − ∞ , g = + ∞ } A=\{f=+\infty,g=-\infty\}\cup\{f=-\infty,g=+\infty\} A={f=+,g=}{f=,g=+}那么 0 ≤ μ ( A ) ≤ μ { f = + ∞ , g = − ∞ } + μ { f = − ∞ , g = + ∞ } ≤ μ { g = − ∞ } + μ { f = − ∞ } = 0 \begin{aligned} 0\le& \mu(A)\le\mu\{f=+\infty,g=-\infty\}+\mu\{f=-\infty,g=+\infty\}\\\le&\mu\{g=-\infty\}+\mu\{f=-\infty\}=0 \end{aligned} 0μ(A)μ{f=+,g=}+μ{f=,g=+}μ{g=}+μ{f=}=0 μ ( A ) = 0 \mu(A)=0 μ(A)=0,可见 f + g f+g f+g处处有定义, ∫ X f d μ > − ∞ , ∫ X g d μ = + ∞ \displaystyle\int_Xfd\mu>-\infty,\int_Xgd\mu=+\infty Xfdμ>,Xgdμ=+情形同理
情形2 ∫ X f d μ = − ∞ , ∫ X g d μ < + ∞ \displaystyle\int_Xfd\mu=-\infty,\int_Xgd\mu<+\infty Xfdμ=,Xgdμ<+时,则有 ∫ X f − d μ = + ∞ , ∫ X f + d μ < + ∞ , ∫ X g + d μ < + ∞ \int_Xf^-d\mu=+\infty,\int_Xf^+d\mu<+\infty,\int_Xg^+d\mu<+\infty Xfdμ=+,Xf+dμ<+,Xg+dμ<+可以推得 f < + ∞ , g < + ∞ a . e . f<+\infty,g<+\infty\quad a.e. f<+,g<+a.e.于是 μ ( A ) = 0 \mu(A)=0 μ(A)=0 f + g f+g f+g几乎处处有定义, ∫ X f d μ < + ∞ , ∫ X g d μ = − ∞ \displaystyle\int_Xfd\mu<+\infty,\int_Xgd\mu=-\infty Xfdμ<+,Xgdμ=情形同理
情形3 f , g f,g f,g均可积,此时 f , g f,g f,g几乎处处有限,显然 μ ( A ) = 0 \mu(A)=0 μ(A)=0 f + g f+g f+g几乎处处有定义
f + g = ( f + g ) I A c a . e f+g=(f+g)I_{A^c}\quad a.e f+g=(f+g)IAca.e f + g f+g f+g为几乎处处定义的可测函数
②再证明 ∫ X ( f + g ) d μ = ∫ X f d μ + ∫ X g d μ \displaystyle\int_X(f+g)d\mu=\int_Xfd\mu+\int_Xgd\mu X(f+g)dμ=Xfdμ+Xgdμ
我们证明在 f + g f+g f+g有意义的情况下,等式 ( f + g ) + + f − + g − = ( f + g ) − + f + + g + (f+g)^++f^-+g^-=(f+g)^-+f^++g^+ (f+g)++f+g=(f+g)+f++g+成立,还是分三种情况讨论:
情形1: f + g = + ∞ f+g=+\infty f+g=+,此时有两种可能, f = + ∞ , g > − ∞ f=+\infty,g>-\infty f=+,g> f > − ∞ , g = + ∞ f>-\infty,g=+\infty f>,g=+,仅证明前一种情况,后一种是类似的:
如果 f + g = + ∞ , f = + ∞ , g > − ∞ f+g=+\infty,f=+\infty,g>-\infty f+g=+,f=+,g>,则 ( f + g ) + = + ∞ , ( f + g ) − = 0 f + = + ∞ , f − = 0 g + ≥ 0 , g − ≥ 0 (f+g)^+=+\infty,(f+g)^-=0\\ f^+=+\infty,f^-=0\\ g^+\ge0,g^-\ge 0 (f+g)+=+,(f+g)=0f+=+,f=0g+0,g0由此可以得到等式两边均为 + ∞ +\infty +
情形2: f + g = − ∞ f+g=-\infty f+g=的证明与情形1类似,等式也成立
情形3: ∣ f + g ∣ < + ∞ |f+g|<+\infty f+g<+,则 f , g f,g f,g都是实数,等式自然成立
对上面的等式两边积分,就可以得到 ∫ X ( f + g ) + d μ + ∫ X f − d μ + ∫ X g − d μ = ∫ X ( f + g ) − d μ + ∫ X f + d μ + ∫ X g + d μ \int_X(f+g)^+d\mu+\int_Xf^-d\mu+\int_Xg^-d\mu=\int_X(f+g)^-d\mu+\int_Xf^+d\mu+\int_Xg^+d\mu X(f+g)+dμ+Xfdμ+Xgdμ=X(f+g)dμ+Xf+dμ+Xg+dμ分情况讨论:
情形1:如果 ∫ X f + d μ = + ∞ \displaystyle \int_X f^+d\mu=+\infty Xf+dμ=+,那么 ∫ X f d μ = + ∞ , ∫ X g d μ > − ∞ \displaystyle\int_X fd\mu=+\infty,\int_X gd\mu>-\infty Xfdμ=+,Xgdμ>,因此, ∫ X f − d μ < + ∞ , ∫ X g − d μ < + ∞ \displaystyle\int_X f^-d\mu<+\infty,\int_X g^-d\mu<+\infty Xfdμ<+,Xgdμ<+,由于等式成立, ∫ X ( f + g ) + d μ = + ∞ \displaystyle\int_X(f+g)^+d\mu=+\infty X(f+g)+dμ=+,而 ( f + g ) − ≤ f − + g − (f+g)^-\le f^-+g^- (f+g)f+g因此 ∫ X ( f + g ) − d μ ≤ ∫ X f − d μ + ∫ X g − d μ < + ∞ \int_X(f+g)^-d\mu\le \int_X f^-d\mu+\int_X g^-d\mu<+\infty X(f+g)dμXfdμ+Xgdμ<+因此 f + g f+g f+g积分存在,并且 ∫ X ( f + g ) d μ = + ∞ = ∫ X f d μ + ∫ X g d μ \int_X(f+g)d\mu=+\infty=\int_X fd\mu+\int_X gd\mu X(f+g)dμ=+=Xfdμ+Xgdμ ∫ X g d μ = + ∞ \displaystyle\int_X gd\mu=+\infty Xgdμ=+的情形也是类似的
情形2: ∫ X f − d μ = + ∞ 或 ∫ X g − d μ = + ∞ \displaystyle \int_X f^-d\mu=+\infty或\int_X g^-d\mu=+\infty Xfdμ=+Xgdμ=+情形的证明同情形1类似,不再重复
情形3: f , g f,g f,g均可积,那么,由 ( f + g ) + ≤ f + + g + ( f + g ) − ≤ f − + g − (f+g)^+\le f^++g^+\\ (f+g)^-\le f^-+g^- (f+g)+f++g+(f+g)f+g可以知道 f + g f+g f+g也可积,移项即可证得等式

定理4.5 f , g f,g f,g是可积函数.
(1)如果 ∫ A f d μ ≥ ∫ A g d μ \displaystyle \int_Afd\mu \ge \int_A gd\mu AfdμAgdμ对任意可测集 A A A都成立,则 f ≥ g a . e f\ge g\quad a.e fga.e
(2)如果 ∫ A f d μ = ∫ A g d μ \displaystyle \int_Afd\mu = \int_A gd\mu Afdμ=Agdμ对任意的可测集 A A A均成立,则 f = g a . e . f=g \quad a.e. f=ga.e.

证:
(1)如果 f ≥ g a . e . f\ge g\quad a.e. fga.e.不成立,那么 μ { f < g } = μ ( ⋃ n = 1 ∞ { g ≥ f + 1 n } ) > 0 \displaystyle\mu\{f<g\}=\mu(\bigcup_{n=1}^\infty\{g\ge f+\frac{1}{n}\})>0 μ{f<g}=μ(n=1{gf+n1})>0,存在正整数 n 0 n_0 n0,有 μ { g ≥ f + 1 n 0 } > 0 \mu\{g\ge f+\frac{1}{n_0}\}>0 μ{gf+n01}>0 A = { g ≥ f + 1 n 0 } A=\{g\ge f+\frac{1}{n_0}\} A={gf+n01},则 ∫ A g d μ ≥ ∫ A ( f + 1 n 0 ) d μ = ∫ A f d μ + 1 n 0 μ ( A ) > ∫ A f d μ \int_Agd\mu\ge\int_A (f+\frac{1}{n_0})d\mu=\int_Afd\mu+\frac{1}{n_0}\mu(A)>\int_Afd\mu AgdμA(f+n01)dμ=Afdμ+n01μ(A)>Afdμ矛盾,因此 f ≥ g a . e . f\ge g\quad a.e. fga.e.
(2)由于对任意的的可测集 A A A ∫ A f d μ ≥ ∫ A g d μ , ∫ A g d μ ≥ ∫ A f d μ \displaystyle \int_Afd\mu\ge \int_Agd\mu,\int_Agd\mu\ge \int_Afd\mu AfdμAgdμ,AgdμAfdμ同时成立,再利用结论(1)即可证得

定理4.6(积分的绝对连续性) f f f是可积函数,则 ∀ ε > 0 , ∃ δ > 0 \forall \varepsilon>0,\exists \delta>0 ε>0,δ>0,对任意的可测集 A A A,只要 μ ( A ) < δ \mu(A)<\delta μ(A)<δ,就有 ∫ A ∣ f ∣ d μ < ε \int_A|f|d\mu<\varepsilon Afdμ<ε

证:
f ≥ 0 f\ge 0 f0,且 f f f可积,如果 f f f有界,设 f ≤ M f\le M fM,那么对任意的正数 ε > 0 \varepsilon>0 ε>0,对任意的可测集 A A A,只要 μ ( A ) < ε M \mu(A)<\frac{\varepsilon}{M} μ(A)<Mε,那么 ∫ A f d μ = ∫ X f I A d μ ≤ M ∫ X I A d μ = M μ ( A ) < ε \int_Afd\mu=\int_XfI_Ad\mu\le M\int_XI_Ad\mu=M\mu(A)<\varepsilon Afdμ=XfIAdμMXIAdμ=Mμ(A)<ε如果 f f f是一般的非负可积函数,则 f f f几乎处处有限,取一列渐升非负简单函数列 { f n } \{f_n\} {fn} f n ↑ f f_n\uparrow f fnf,则 lim ⁡ n → ∞ ∫ X f n d μ = ∫ X f d μ \lim_{n\to\infty}\int_X f_nd\mu= \int_X fd\mu nlimXfndμ=Xfdμ对任意的 ε > 0 \varepsilon>0 ε>0,存在正整数 n 0 n_0 n0,有 ∫ X f d μ − ε 2 < ∫ X f n 0 d μ ≤ ∫ X f d μ \int_X fd\mu - \frac{\varepsilon}{2}<\int_X f_{n_0}d\mu\le\int_X fd\mu Xfdμ2ε<Xfn0dμXfdμ由于 f n 0 f_{n_0} fn0有界,存在正数 δ > 0 \delta>0 δ>0,对任意的可测集 A A A,只要 μ ( A ) < δ \mu(A)<\delta μ(A)<δ,就有 ∫ A f n 0 d μ < ε 2 \int_A f_{n_0}d\mu<\frac{\varepsilon}{2} Afn0dμ<2ε f − f n 0 f-f_{n_0} ffn0处处有意义,故也为非负可测函数,因此 ∫ A ( f − f n 0 ) d μ ≤ ∫ X ( f − f n 0 ) d μ < ε 2 \int_{A}(f-f_{n_0})d\mu\le\int_X(f-f_{n_0})d\mu<\frac{\varepsilon}{2} A(ffn0)dμX(ffn0)dμ<2ε从而 ∫ A f d μ < ∫ A f n 0 d μ + ε 2 < ε \int_A fd\mu <\int_A f_{n_0}d\mu+\frac{\varepsilon}{2}<\varepsilon Afdμ<Afn0dμ+2ε<ε一般可积函数只要利用上面的结论即可

三大积分极限定理

本节内容讲述测度论中最实用的定理——Levi定理、Fatou引理和Lebesgue控制收敛定理,用于解决积分和极限号交换的问题。

Levi渐升列定理

定理4.7(Levi渐升列定理) { f n } \{f_n\} {fn}是几乎处处的非负渐升可测函数列,并且 f n ↑ f a . e . f_n\uparrow f\quad a.e. fnfa.e.,则 f f f是几乎处处定义的非负可测函数,并且 lim ⁡ n → ∞ ∫ X f n d μ = ∫ X f d μ \lim_{n\to\infty}\int_X f_nd\mu=\int_X fd\mu nlimXfndμ=Xfdμ

证:
先设 { f n , n = 1 , 2 , ⋯   } \{f_n,n=1,2,\cdots\} {fn,n=1,2,} f f f都是处处非负的,并且对任意的 x ∈ X x\in X xX,都有 f n ( x ) ↑ f ( x ) f_n(x)\uparrow f(x) fn(x)f(x),则对任意的 n ≥ 1 n\ge 1 n1,都有 ∫ X f n d μ ≤ ∫ X f d μ \int_X f_nd\mu \le \int_X fd\mu XfndμXfdμ因此 lim ⁡ n → ∞ ∫ X f n d μ ≤ ∫ X f d μ \lim_{n\to\infty}\int_X f_nd\mu \le \int_X fd\mu nlimXfndμXfdμ只要证明 lim ⁡ n → ∞ ∫ X f n d μ ≥ ∫ X f d μ \displaystyle\lim_{n\to\infty}\int_X f_nd\mu\ge \int_X fd\mu nlimXfndμXfdμ:对任意的 c ∈ ( 0 , 1 ) c\in(0,1) c(0,1),令 A n = { f n ≥ c f } A n ↑ X B n = { f n ≤ c f } B n ↓ ∅ A_n=\{f_n\ge cf\}\quad A_n\uparrow X\\ B_n=\{f_n\le cf\}\quad B_n\downarrow \emptyset An={fncf}AnXBn={fncf}Bn ∫ X f n d μ = ∫ A n f n d μ + ∫ B n f n d μ ≥ ∫ A n f n d μ ≥ c . ∫ A n f d μ \int_Xf_nd\mu=\int_{A_n}f_nd\mu+\int_{B_n}f_nd\mu\ge\int_{A_n}f_nd\mu\ge c.\int_{A_n}fd\mu Xfndμ=Anfndμ+BnfndμAnfndμc.Anfdμ只要证明 lim ⁡ n → ∞ ∫ A n f d μ = ∫ X f d μ \lim_{n\to\infty}\int_{A_n}fd\mu=\int_Xfd\mu nlimAnfdμ=Xfdμ即可,取非负渐升简单函数列 { h n } \{h_n\} {hn} h n ↑ f h_n\uparrow f hnf,则 lim ⁡ n → ∞ ∫ X h n d μ = ∫ X f d μ lim ⁡ n → ∞ ∫ A m h n d μ = ∫ A m f d μ \lim_{n\to\infty}\int_X h_nd\mu =\int_Xfd\mu\\ \lim_{n\to\infty}\int_{A_m} h_nd\mu=\int_{A_m}fd\mu nlimXhndμ=XfdμnlimAmhndμ=Amfdμ并且由测度的上连续性,不难证明 lim ⁡ m → ∞ ∫ A m h n d μ = ∫ X h n d μ \lim_{m\to\infty}\int_{A_m}h_nd\mu=\int_X h_nd\mu mlimAmhndμ=Xhndμ情形1 ∫ X f d μ = + ∞ \displaystyle\int_Xfd\mu=+\infty Xfdμ=+,则对任意的正数 M > 0 M>0 M>0,存在正整数 n 0 n_0 n0,有 ∫ X h n 0 d μ ≥ 2 M \int_{X}h_{n_0}d\mu\ge 2M Xhn0dμ2M存在正整数 m 0 m_0 m0,有 ∫ A m 0 h n 0 d μ ≥ M \int_{A_{m_0}}h_{n_0}d\mu\ge M Am0hn0dμM因此 ∫ A m 0 f d μ ≥ ∫ A m 0 h n 0 d μ ≥ M \int_{A_{m_0}}fd\mu\ge \int_{A_{m_0}}h_{n_0}d\mu\ge M Am0fdμAm0hn0dμM从而 lim ⁡ n → ∞ ∫ A n f d μ = + ∞ = ∫ X f d μ \lim_{n\to\infty}\int_{A_n}fd\mu=+\infty=\int_X fd\mu nlimAnfdμ=+=Xfdμ情形2 ∫ X f d μ < + ∞ \displaystyle\int_Xfd\mu<+\infty Xfdμ<+,首先, lim ⁡ n → ∞ f d μ ≤ ∫ X f d μ \displaystyle \lim_{n\to\infty}fd\mu\le \int_X fd\mu nlimfdμXfdμ是显然成立的,只要证明 lim ⁡ n → ∞ ∫ A n f d μ ≥ ∫ X f d μ \displaystyle \lim_{n\to\infty}\int_{A_n}fd\mu\ge \int_X fd\mu nlimAnfdμXfdμ即可。
对于任意的 ε > 0 \varepsilon>0 ε>0,由 lim ⁡ m → ∞ ∫ X h m d μ = ∫ X f d μ \displaystyle\lim_{m\to\infty}\int_Xh_md\mu=\int_Xfd\mu mlimXhmdμ=Xfdμ,存在正整数 m 0 m_0 m0,使得 ∫ X h m 0 d μ ≥ ∫ X f d μ − ε 2 \int_Xh_{m_0}d\mu\ge\int_Xfd\mu-\frac{\varepsilon}{2} Xhm0dμXfdμ2ε又由 lim ⁡ n → ∞ ∫ A n h m 0 d μ = ∫ X h m 0 d μ \displaystyle\lim_{n\to\infty}\int_{A_n}h_{m_0}d\mu=\int_Xh_{m_0}d\mu nlimAnhm0dμ=Xhm0dμ,存在正整数 N N N n ≥ N n\ge N nN时,有 ∫ A n h m 0 d μ ≥ ∫ X h m 0 d μ − ε 2 \int_{A_n}h_{m_0}d\mu\ge \int_Xh_{m_0}d\mu-\frac{\varepsilon}{2} Anhm0dμXhm0dμ2ε ∫ A n f d μ ≥ ∫ X f d μ − ε \int_{A_n}fd\mu\ge \int_Xfd\mu - \varepsilon AnfdμXfdμε n → ∞ n\to\infty n,有 lim ⁡ n → ∞ ∫ A n f d μ ≥ ∫ X f d μ − ε \lim_{n\to\infty}\int_{A_n}fd\mu\ge \int_Xfd\mu - \varepsilon nlimAnfdμXfdμε ε \varepsilon ε的任意性,就有 lim ⁡ n → ∞ ∫ A n f d μ ≥ ∫ X f d μ \lim_{n\to\infty}\int_{A_n}fd\mu \ge \int_Xfd\mu nlimAnfdμXfdμ lim ⁡ n → ∞ ∫ A n f d μ = ∫ X f d μ \displaystyle\lim_{n\to\infty}\int_{A_n}fd\mu=\int_Xfd\mu nlimAnfdμ=Xfdμ
前面我们证明了不等式 ∫ X f n d μ ≥ c ∫ A n f d μ \displaystyle\int_Xf_nd\mu\ge c\int_{A_n}fd\mu XfndμcAnfdμ,令 n → ∞ n\to\infty n,就有 lim ⁡ n → ∞ ∫ X f n d μ ≥ c ∫ X f d μ \lim_{n\to\infty}\int_{X}f_nd\mu\ge c\int_Xfd\mu nlimXfndμcXfdμ再令 c → 1 c\to 1 c1,就有 lim ⁡ n → ∞ ∫ X f n d μ ≥ ∫ X f d μ \lim_{n\to\infty}\int_{X}f_nd\mu\ge \int_Xfd\mu nlimXfndμXfdμ lim ⁡ n → ∞ ∫ X f n d μ = ∫ X f d μ \lim_{n\to\infty}\int_{X}f_nd\mu= \int_Xfd\mu nlimXfndμ=Xfdμ如果 { f n } \{f_n\} {fn}几乎处处非负渐升,并且 f n ↑ f f_n\uparrow f fnf,则令 A = { f n ≥ 0 , n = 1 , 2 , ⋯   , f n ↑ f } A=\{f_n\ge0,n=1,2,\cdots,f_n\uparrow f\} A={fn0,n=1,2,,fnf} μ ( A c ) = 0 \mu(A^c)=0 μ(Ac)=0,令 f n ‾ = f n I A , n = 1 , 2 , ⋯   , f ‾ = f I A \overline{f_n}=f_nI_{A},n=1,2,\cdots,\overline{f}=fI_A fn=fnIA,n=1,2,,f=fIA,则 f n ‾ \overline{f_n} fn非负可测并且 f n ‾ ↑ f ‾ \overline{f_n}\uparrow \overline{f} fnf,就有 ∫ X f n d μ = ∫ X f n ‾ d μ ↑ ∫ X f ‾ d μ = ∫ X f d μ \int_Xf_nd\mu=\int_X\overline{f_n}d\mu\uparrow \int_X\overline{f}d\mu=\int_Xfd\mu Xfndμ=XfndμXfdμ=Xfdμ

推论4.1(求和号与积分号交换) { f n } \{f_n\} {fn}为非负可测函数列(几乎处处非负的可测函数列),则 ∫ X ∑ n = 1 ∞ f n d μ = ∑ n = 1 ∞ ∫ X f n d μ \int_X\sum_{n=1}^\infty f_nd\mu=\sum_{n=1}^\infty\int_Xf_nd\mu Xn=1fndμ=n=1Xfndμ

推论4.2(区间可列可加性) f f f是积分存在的可测函数, { A n , n = 1 , 2 , ⋯   } \{A_n,n=1,2,\cdots\} {An,n=1,2,}是可测集 A A A的一个可列可测分割,则 ∫ A f d μ = ∑ n = 1 ∞ ∫ A n f d μ \int_Afd\mu=\sum_{n=1}^\infty\int_{A_n}fd\mu Afdμ=n=1Anfdμ

Fatou引理

定理4.8(Fatou引理) 对于任何几乎处处非负的可测函数列 { f n , n = 1 , 2 , ⋯   } \{f_n,n=1,2,\cdots\} {fn,n=1,2,},都有 ∫ X lim inf ⁡ n → ∞ f n d μ ≤ lim inf ⁡ n → ∞ ∫ X f n d μ \int_X\liminf_{n\to\infty}f_nd\mu\le \liminf_{n\to\infty}\int_Xf_nd\mu XnliminffndμnliminfXfndμ

证:
只要证明了 { f n , n = 1 , 2 , ⋯   } \{f_n,n=1,2,\cdots\} {fn,n=1,2,}处处非负的情形成立即可,则 lim inf ⁡ n → ∞ f n = lim ⁡ n → ∞ inf ⁡ k ≥ n f k \displaystyle \liminf_{n\to\infty}f_n=\lim_{n\to\infty}\inf_{k\ge n}f_k nliminffn=nlimkninffk { inf ⁡ k ≥ n f k , n = 1 , 2 , ⋯   } \displaystyle\{\inf_{k\ge n}f_k,n=1,2,\cdots\} {kninffk,n=1,2,}非负渐升,由Levi定理 ∫ X lim inf ⁡ n → ∞ f n d μ = lim ⁡ n → ∞ ∫ X inf ⁡ k ≥ n f k d μ \int_X\liminf_{n\to\infty}f_nd\mu=\lim_{n\to\infty}\int_X\inf_{k\ge n}f_kd\mu Xnliminffndμ=nlimXkninffkdμ而对 n ≥ 1 n\ge 1 n1,有 inf ⁡ k ≥ n f k ≤ f n \inf_{k\ge n}f_k\le f_n kninffkfn ∫ X inf ⁡ k ≥ n f k d μ ≤ ∫ X f n d μ \int_X\inf_{k\ge n}f_kd\mu \le \int_X f_nd\mu XkninffkdμXfndμ两边取下极限,就有 lim ⁡ n → ∞ ∫ X inf ⁡ k ≥ n f k d μ ≤ lim inf ⁡ n → ∞ ∫ X f n d μ \lim_{n\to\infty}\int_X\inf_{k\ge n}f_kd\mu \le \liminf_{n\to\infty}\int_Xf_nd\mu nlimXkninffkdμnliminfXfndμ就有 ∫ X lim inf ⁡ n → ∞ f n d μ = lim ⁡ n → ∞ ∫ X inf ⁡ k ≥ n f k d μ ≤ lim inf ⁡ n → ∞ ∫ X f n d μ \int_X\liminf_{n\to\infty}f_nd\mu=\lim_{n\to\infty}\int_X\inf_{k\ge n}f_kd\mu\le \liminf_{n\to\infty}\int_Xf_nd\mu Xnliminffndμ=nlimXkninffkdμnliminfXfndμ证毕

推论4.3(Fatou引理的推广) { f n , n = 1 , 2 , ⋯   } \{f_n,n=1,2,\cdots\} {fn,n=1,2,}是可测函数列.
(1)如果存在可积函数 g g g,使得 f n ≥ g a . e . , n = 1 , 2 , ⋯ f_n\ge g\quad a.e.,n=1,2,\cdots fnga.e.,n=1,2,,则 lim inf ⁡ n → ∞ f n \displaystyle\liminf_{n\to\infty}f_n nliminffn积分存在并且 ∫ X lim inf ⁡ n → ∞ f n d μ ≤ lim inf ⁡ n → ∞ ∫ X f n d μ \int_X\liminf_{n\to\infty}f_nd\mu\le\liminf_{n\to\infty}\int_Xf_nd\mu XnliminffndμnliminfXfndμ(2)如果存在可积函数 g g g,使得 f n ≤ g a . e . , n = 1 , 2 , ⋯ f_n\le g\quad a.e.,n=1,2,\cdots fnga.e.,n=1,2,,则 lim sup ⁡ n → ∞ f n \displaystyle \limsup_{n\to\infty}f_n nlimsupfn积分存在并且 lim sup ⁡ n → ∞ ∫ X f n d μ ≤ ∫ X lim sup ⁡ n → ∞ f n d μ \limsup_{n\to\infty}\int_Xf_nd\mu\le\int_X\limsup_{n\to\infty}f_nd\mu nlimsupXfndμXnlimsupfndμ

证:
(1)由 g g g可积, g g g几乎处处有限,不妨就设 g g g处处有限,则 f n − g f_n-g fng处处有意义且非负,故 { f n − g , n = 1 , 2 , ⋯   } \{f_n-g,n=1,2,\cdots\} {fng,n=1,2,}是是几乎处处非负的可测函数,则 ∫ X lim inf ⁡ n → ∞ ( f n − g ) d μ = ∫ X ( lim inf ⁡ n → ∞ f n − g ) d μ = ∫ X lim inf ⁡ n → ∞ f n d μ − ∫ X g d μ ≤ lim inf ⁡ n → ∞ ∫ X ( f n − g ) d μ = lim inf ⁡ n → ∞ ∫ X f n d μ − ∫ X g d μ \begin{aligned} &\int_X\liminf_{n\to\infty}(f_n-g)d\mu=\int_X(\liminf_{n\to\infty}f_n - g) d\mu\\=& \int_X\liminf_{n\to\infty}f_nd\mu - \int_X gd\mu\\ \le& \liminf_{n\to\infty} \int_X(f_n-g)d\mu=\liminf_{n\to\infty}\int_Xf_nd\mu - \int_Xgd\mu \end{aligned} =Xnliminf(fng)dμ=X(nliminffng)dμXnliminffndμXgdμnliminfX(fng)dμ=nliminfXfndμXgdμ ∫ X lim inf ⁡ n → ∞ f n d μ ≤ lim inf ⁡ n → ∞ ∫ X f n d μ \int_X\liminf_{n\to\infty}f_nd\mu\le\liminf_{n\to\infty}\int_Xf_nd\mu XnliminffndμnliminfXfndμ(2)的证明和(1)类似,省略

Lebesgue控制收敛定理

定理4.8(Lebesgue控制收敛定理) { f n } \{f_n\} {fn}是可积函数列, f n → a . e . f f_n\xrightarrow{a.e.}f fna.e. f f n → μ f f_n\xrightarrow{\mu}f fnμ f,存在非负可积函数 g g g,满足 ∣ f n ∣ ≤ g a . e . n = 1 , 2 , ⋯ |f_n|\le g \quad a.e. \quad n=1,2,\cdots fnga.e.n=1,2, f f f可积,同时有 lim ⁡ n → ∞ ∫ X f n d μ = ∫ X f d μ \lim_{n\to\infty}\int_Xf_nd\mu=\int_Xfd\mu nlimXfndμ=Xfdμ

证:
先证明几乎处处收敛的情形:实际上, g , − g g,-g g,g都是可积函数,并且 − g ≤ f n ≤ g a . e . n = 1 , 2 , ⋯ -g\le f_n\le g\quad a.e. \quad n=1,2,\cdots gfnga.e.n=1,2,由推广的Fatou引理,并且 lim sup ⁡ n → ∞ ∫ X f n d μ ≤ ∫ X lim sup ⁡ n → ∞ f n d μ lim inf ⁡ n → ∞ ∫ X f n d μ ≥ ∫ X lim inf ⁡ n → ∞ f n d μ \limsup_{n\to\infty}\int_Xf_nd\mu\le \int_X\limsup_{n\to\infty}f_nd\mu\\ \liminf_{n\to\infty}\int_Xf_nd\mu\ge \int_X\liminf_{n\to\infty}f_nd\mu nlimsupXfndμXnlimsupfndμnliminfXfndμXnliminffndμ并且 f = lim sup ⁡ n → ∞ f n = lim inf ⁡ n → ∞ f n a . e . f=\limsup_{n\to\infty}f_n=\liminf_{n\to\infty}f_n\quad a.e. f=nlimsupfn=nliminffna.e.同时, ∣ f ∣ ≤ g a . e . |f|\le g\quad a.e. fga.e.,因此 f f f可积,同时 ∫ X lim sup ⁡ n → ∞ f n d μ = ∫ X lim inf ⁡ n → ∞ f n d μ = ∫ X f d μ \int_X\limsup_{n\to\infty}f_nd\mu=\int_X\liminf_{n\to\infty}f_nd\mu=\int_X fd\mu Xnlimsupfndμ=Xnliminffndμ=Xfdμ因此 lim ⁡ n → ∞ ∫ X f n d μ = ∫ X f d μ \lim_{n\to\infty}\int_Xf_nd\mu = \int_Xfd\mu nlimXfndμ=Xfdμ如果 f n → μ f f_n\xrightarrow{\mu}f fnμ f,那么由Riesz定理, { ∫ X f n d μ } \displaystyle\{\int_X f_nd\mu\} {Xfndμ}的任意子列,都存在子列收敛到 ∫ X f d μ \displaystyle \int_X fd\mu Xfdμ,故 lim ⁡ n → ∞ ∫ X f n d μ = ∫ X f d μ \displaystyle\lim_{n\to\infty}\int_Xf_nd\mu=\int_X fd\mu nlimXfndμ=Xfdμ

推论4.4(有界收敛定理) { f n } \{f_n\} {fn}是可测函数, A A A是测度有限的可测集,如果存在正数 M > 0 M>0 M>0 ∣ f n ( x ) ∣ ≤ M a . e . x ∈ A , n = 1 , 2 , ⋯ |f_n(x)|\le M\quad a.e.\quad x\in A,n=1,2,\cdots fn(x)Ma.e.xA,n=1,2, f n → a . e . f f_n\xrightarrow{a.e.} f fna.e. f f n → μ f f_n\xrightarrow{\mu}f fnμ f,则 f f f A A A上可积,并且 lim ⁡ n → ∞ ∫ A f n d μ = ∫ A f d μ \lim_{n\to\infty}\int_Af_nd\mu=\int_Afd\mu nlimAfndμ=Afdμ

推论4.5(求和号与积分号交换) { f n } \{f_n\} {fn}是可测函数, g = ∑ n = 1 ∞ ∣ f n ∣ \displaystyle g=\sum_{n=1}^\infty|f_n| g=n=1fn,如果 ∫ X g d μ < + ∞ \displaystyle \int_Xgd\mu<+\infty Xgdμ<+,则 f = ∑ n = 1 ∞ f n f=\sum_{n=1}^\infty f_n f=n=1fn几乎处处有定义,并且 ∫ X f d μ = ∑ n = 1 ∞ ∫ X f n d μ \int_Xfd\mu = \sum_{n=1}^\infty \int_X f_nd\mu Xfdμ=n=1Xfndμ


  1. 因为对任意的 i = 1 , 2 , ⋯   , n , j = 1 , 2 , ⋯   , m i=1,2,\cdots,n,j=1,2,\cdots,m i=1,2,,n,j=1,2,,m,如果 E i ∩ F j ≠ ∅ E_i\cap F_j\neq \emptyset EiFj=,那么在 E i ∩ F j E_i\cap F_j EiFj上,如果按照表示法 f = ∑ k = 1 n c k I E k \displaystyle f=\sum_{k=1}^nc_kI_{E_k} f=k=1nckIEk,函数值为 c i c_i ci,如果按照表示法 f = ∑ k = 1 m d k I F k \displaystyle f=\sum_{k=1}^md_kI_{F_k} f=k=1mdkIFk,则函数值为 d j d_j dj,由函数之定义, c i = d j c_i=d_j ci=dj,故 c i I E i ∩ F j = d j I E i ∩ F j c_iI_{E_i\cap F_j}=d_jI_{E_i\cap F_j} ciIEiFj=djIEiFj,如果 E i ∩ F j = ∅ E_i\cap F_j= \emptyset EiFj=,那么 I E i ∩ F j I_{E_i\cap F_j} IEiFj恒为零,此时还有 c i I E i ∩ F j = d j I E i ∩ F j c_iI_{E_i\cap F_j}=d_jI_{E_i\cap F_j} ciIEiFj=djIEiFj,如果不在 E i ∩ F j E_i\cap F_j EiFj上, I E i ∩ F j = 0 I_{E_i\cap F_j}=0 IEiFj=0,显然有 c i I E i ∩ F j = d j I E i ∩ F j c_iI_{E_i\cap F_j}=d_jI_{E_i\cap F_j} ciIEiFj=djIEiFj,总而言之,恒有 c i I E i ∩ F j = d j I E i ∩ F j c_iI_{E_i\cap F_j}=d_jI_{E_i\cap F_j} ciIEiFj=djIEiFj,故 ∑ i = 1 n ∑ j = 1 m c i I E i ∩ F j = ∑ i = 1 n ∑ j = 1 m d j I E i ∩ F j \displaystyle \sum_{i=1}^n\sum_{j=1}^mc_iI_{E_i\cap F_j}=\sum_{i=1}^n\sum_{j=1}^md_jI_{E_i\cap F_j} i=1nj=1mciIEiFj=i=1nj=1mdjIEiFj ↩︎

  2. 两个和式相等的依据:
    如果 E i ∩ F j ≠ ∅ E_i\cap F_j\neq \emptyset EiFj=,则 c i = d j c_i=d_j ci=dj,故 c i μ ( E i ∩ F j ) = d j μ ( E i ∩ F j ) c_i\mu(E_i\cap F_j)=d_j\mu(E_i\cap F_j) ciμ(EiFj)=djμ(EiFj),如果 E i ∩ F j = ∅ E_i\cap F_j= \emptyset EiFj=,则 μ ( E i ∩ F j ) = 0 \mu(E_i\cap F_j)=0 μ(EiFj)=0,因此 c i μ ( E i ∩ F j ) = d j μ ( E i ∩ F j ) = 0 c_i\mu(E_i\cap F_j)=d_j\mu(E_i\cap F_j)=0 ciμ(EiFj)=djμ(EiFj)=0,综上,恒有 c i μ ( E i ∩ F j ) = d j μ ( E i ∩ F j ) c_i\mu(E_i\cap F_j)=d_j\mu(E_i\cap F_j) ciμ(EiFj)=djμ(EiFj)求和,就得到 ∑ i = 1 n ∑ j = 1 m c i μ ( E i ∩ F j ) = ∑ i = 1 n ∑ j = 1 m d j μ ( E i ∩ F j ) \sum_{i=1}^n\sum_{j=1}^mc_i\mu(E_i\cap F_j)=\sum_{i=1}^n\sum_{j=1}^md_j\mu(E_i\cap F_j) i=1nj=1mciμ(EiFj)=i=1nj=1mdjμ(EiFj) ↩︎

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值