测度空间的积分
接下来我们定义测度空间上的积分,方法还是采用典型方法,需要三步:
第一步:定义非负简单函数的积分
第二步:由于非负可测函数都可由渐升非负简单函数列逼近,由此定义非负可测函数的积分
第三步:将一般可测函数分解为正负部,其积分为正部的积分减去负部的积分
接下来的讨论,如无特别说明,测度空间为
(
X
,
F
,
μ
)
(X,\mathscr{F},\mu)
(X,F,μ),
F
\mathscr{F}
F中的集合称为可测集
非负简单函数的积分
对非负简单函数 f = ∑ k = 1 n c k I E k \displaystyle f=\sum_{k=1}^nc_kI_{E_k} f=k=1∑nckIEk, E 1 , ⋯ , E n E_1,\cdots,E_n E1,⋯,En为两两不交的可测集, X = ⋃ k = 1 n E k \displaystyle X=\bigcup_{k=1}^nE_k X=k=1⋃nEk, c 1 , ⋯ , c n c_1,\cdots,c_n c1,⋯,cn为非负实数,定义其积分为 ∫ X f d μ = ∑ k = 1 n c k μ ( E k ) \int_Xfd\mu=\sum_{k=1}^nc_k\mu(E_k) ∫Xfdμ=k=1∑nckμ(Ek)
-
实际上,非负简单函数的表示方法不唯一,因此要证明这一定义是良定义,也就是说,不论表示为何种形式,积分的定义是唯一。
我们设 f = ∑ k = 1 n c k I E k = ∑ k = 1 m d k I F k \displaystyle f=\sum_{k=1}^nc_kI_{E_k}=\sum_{k=1}^md_kI_{F_k} f=k=1∑nckIEk=k=1∑mdkIFk,其中, E 1 , ⋯ , E n E_1,\cdots,E_n E1,⋯,En为两两不交的可测集, F 1 , ⋯ , F m F_1,\cdots,F_m F1,⋯,Fm为两两不交的可测集, X = ⋃ k = 1 n E k = ⋃ k = 1 m F k \displaystyle X=\bigcup_{k=1}^nE_k=\bigcup_{k=1}^m F_k X=k=1⋃nEk=k=1⋃mFk, c 1 , ⋯ , c n , d 1 , ⋯ , d m c_1,\cdots,c_n,d_1,\cdots,d_m c1,⋯,cn,d1,⋯,dm都是非负实数。设 I 1 = ∑ k = 1 n c k μ ( E k ) , I 2 = ∑ k = 1 m d k μ ( F k ) \displaystyle I_1=\sum_{k=1}^nc_k\mu(E_k),I_2=\sum_{k=1}^md_k\mu(F_k) I1=k=1∑nckμ(Ek),I2=k=1∑mdkμ(Fk)。则 f f f还可以表示为 f = ∑ i = 1 n ∑ j = 1 m c i I E i ∩ F j = ∑ i = 1 n ∑ j = 1 m d j I E i ∩ F j f=\sum_{i=1}^n\sum_{j=1}^mc_iI_{E_i\cap F_j}=\sum_{i=1}^n\sum_{j=1}^md_jI_{E_i\cap F_j} f=i=1∑nj=1∑mciIEi∩Fj=i=1∑nj=1∑mdjIEi∩Fj这两种方法是同一种表示方法1,在该表示法下的积分为 I 3 = ∑ i = 1 n ∑ j = 1 m c i μ ( E i ∩ F j ) = ∑ i = 1 n ∑ j = 1 m d j μ ( E i ∩ F j ) I_3=\sum_{i=1}^n\sum_{j=1}^mc_i\mu(E_i\cap F_j)=\sum_{i=1}^n\sum_{j=1}^md_j\mu(E_i\cap F_j) I3=i=1∑nj=1∑mciμ(Ei∩Fj)=i=1∑nj=1∑mdjμ(Ei∩Fj)2而 { E i ∩ F j : i = 1 , 2 , ⋯ , n , j = 1 , 2 , ⋯ , m } \{E_i\cap F_j:i=1,2,\cdots,n,j=1,2,\cdots,m\} {Ei∩Fj:i=1,2,⋯,n,j=1,2,⋯,m}是两两不交的可测集,并且 X = ⋃ i = 1 n ⋃ j = 1 m E i ∩ F j \displaystyle X=\bigcup_{i=1}^n\bigcup_{j=1}^mE_i\cap F_j X=i=1⋃nj=1⋃mEi∩Fj,而 I 3 = ∑ i = 1 n ∑ j = 1 m c i μ ( E i ∩ F j ) = ∑ i = 1 n c i ∑ j = 1 m μ ( E i ∩ F j ) = ∑ i = 1 n c i μ ( E i ) = I 1 I_3=\sum_{i=1}^n\sum_{j=1}^mc_i\mu(E_i\cap F_j)=\sum_{i=1}^nc_i\sum_{j=1}^m\mu(E_i\cap F_j)=\sum_{i=1}^nc_i\mu(E_i)=I_1 I3=i=1∑nj=1∑mciμ(Ei∩Fj)=i=1∑ncij=1∑mμ(Ei∩Fj)=i=1∑nciμ(Ei)=I1同理可证 I 3 = I 2 I_3=I_2 I3=I2,故 I 1 = I 2 I_1=I_2 I1=I2 -
非负简单函数积分的性质:
性质1: A A A是可测集,则 ∫ X I A d μ = μ ( A ) \displaystyle\int_X I_Ad\mu=\mu(A) ∫XIAdμ=μ(A)
性质2: 对任意的非负简单函数 f f f, ∫ X f d μ ≥ 0 \displaystyle \int_X fd\mu\ge 0 ∫Xfdμ≥0
性质3:(半线性性质) 对任意的非负简单函数 f , g f,g f,g,对任意的非负实数 a , b a,b a,b, a f + b g af+bg af+bg也是非负简单函数,并且 ∫ X ( a f + b g ) d μ = a ∫ X f d μ + b ∫ X g d μ \int_X(af+bg)d\mu=a\int_Xfd\mu+b\int_Xgd\mu ∫X(af+bg)dμ=a∫Xfdμ+b∫Xgdμ 性质4:(不等式性质) f , g f,g f,g是非负简单函数, f ≤ g f\le g f≤g,则 ∫ X f d μ ≤ ∫ X g d μ \int_X fd\mu\le \int_X gd\mu ∫Xfdμ≤∫Xgdμ 性质5: { f n } \{f_n\} {fn}是渐升的非负简单函数列, g g g是非负简单函数,并且 g ≤ lim n → ∞ f n \displaystyle g\le \lim_{n\to\infty} f_n g≤n→∞limfn,则有 ∫ X g d μ ≤ lim n → ∞ ∫ X f n d μ \int_Xgd\mu\le\lim_{n\to\infty}\int_X f_nd\mu ∫Xgdμ≤n→∞lim∫Xfndμ
非负简单函数性质的证明:仅证明性质3和性质5,性质4的证明思路和性质3类似,而性质1,2是显然的
性质3的证明:设 f = ∑ k = 1 n c k I E k , g = ∑ k = 1 m d k I F k \displaystyle f=\sum_{k=1}^nc_kI_{E_k},g=\sum_{k=1}^md_kI_{F_k} f=k=1∑nckIEk,g=k=1∑mdkIFk,其中 E 1 , ⋯ , E n E_1,\cdots,E_n E1,⋯,En为两两不交的可测集, F 1 , ⋯ , F m F_1,\cdots,F_m F1,⋯,Fm为两两不交的可测集,并且 X = ⋃ k = 1 n E k = ⋃ k = 1 m F k \displaystyle X=\bigcup_{k=1}^nE_k=\bigcup_{k=1}^mF_k X=k=1⋃nEk=k=1⋃mFk, c 1 , ⋯ , c n , d 1 , ⋯ , d m c_1,\cdots,c_n,d_1,\cdots,d_m c1,⋯,cn,d1,⋯,dm为非负实数,则 a f + b g = ∑ i = 1 n ∑ j = 1 m ( a c i + b d j ) I E i ∩ F j af+bg=\sum_{i=1}^n\sum_{j=1}^m(ac_i+bd_j)I_{E_i\cap F_j} af+bg=i=1∑nj=1∑m(aci+bdj)IEi∩Fj则 ∫ X ( a f + b g ) d μ = ∑ i = 1 n ∑ j = 1 m ( a c i + b d j ) μ ( E i ∩ F j ) = a ∑ i = 1 n ∑ j = 1 m c i μ ( E i ∩ F j ) + b ∑ i = 1 n ∑ j = 1 m d j μ ( E i ∩ F j ) = a ∑ i = 1 n c i ∑ j = 1 m μ ( E i ∩ F j ) + b ∑ j = 1 m d j ∑ i = 1 n μ ( E i ∩ F j ) = a ∑ i = 1 n c i μ ( E i ) + b ∑ j = 1 m d j μ ( F j ) = a ∫ X f d μ + b ∫ X g d μ \begin{aligned} &\int_X(af+bg)d\mu=\sum_{i=1}^n\sum_{j=1}^m(ac_i+bd_j)\mu(E_i\cap F_j)\\ =&a\sum_{i=1}^n\sum_{j=1}^mc_i\mu(E_i\cap F_j)+b\sum_{i=1}^n\sum_{j=1}^md_j\mu(E_i\cap F_j)\\ =&a\sum_{i=1}^nc_i\sum_{j=1}^m\mu(E_i\cap F_j)+b\sum_{j=1}^md_j\sum_{i=1}^n\mu(E_i\cap F_j)\\ =&a\sum_{i=1}^nc_i\mu(E_i)+b\sum_{j=1}^md_j\mu(F_j)\\ =&a\int_X fd\mu+b\int_X g d\mu \end{aligned} ====∫X(af+bg)dμ=i=1∑nj=1∑m(aci+bdj)μ(Ei∩Fj)ai=1∑nj=1∑mciμ(Ei∩Fj)+bi=1∑nj=1∑mdjμ(Ei∩Fj)ai=1∑ncij=1∑mμ(Ei∩Fj)+bj=1∑mdji=1∑nμ(Ei∩Fj)ai=1∑nciμ(Ei)+bj=1∑mdjμ(Fj)a∫Xfdμ+b∫Xgdμ性质5的证明: 对于任意的 c ∈ ( 0 , 1 ) c\in (0,1) c∈(0,1),定义 A n = { f n ≥ c g } B n = { f n < c g } A_n=\{f_n\ge cg\}\\ B_n=\{f_n < cg\} An={fn≥cg}Bn={fn<cg}则 ∫ X f n d μ = ∫ X f n I A n d μ + ∫ X f n I B n d μ ≥ ∫ X f n I A n d μ \int_X f_nd\mu =\int_Xf_nI_{A_n}d\mu+\int_X f_nI_{B_n}d\mu\ge \int_Xf_nI_{A_n}d\mu ∫Xfndμ=∫XfnIAndμ+∫XfnIBndμ≥∫XfnIAndμ由于 { f n } \{f_n\} {fn}是渐升列,故 E 1 ⊂ E 2 ⊂ E 3 ⊂ ⋯ ⊂ E n ⊂ ⋯ E_1\subset E_2\subset E_3\subset \cdots\subset E_n\subset \cdots E1⊂E2⊂E3⊂⋯⊂En⊂⋯,并且, E n ↑ X E_n\uparrow X En↑X,我们证明 ∫ X g I A n d μ ↑ ∫ X g d μ \displaystyle \int_X gI_{A_n}d\mu\uparrow \int_X g d\mu ∫XgIAndμ↑∫Xgdμ,设 g = ∑ k = 1 n c k I E k \displaystyle g=\sum_{k=1}^nc_kI_{E_k} g=k=1∑nckIEk,其中 E 1 , ⋯ , E n E_1,\cdots,E_n E1,⋯,En为两两不交的可测集,并且 X = ⋃ k = 1 n E k \displaystyle X=\bigcup_{k=1}^n E_k X=k=1⋃nEk, c 1 , ⋯ , c n c_1,\cdots,c_n c1,⋯,cn为非负实数,则 g I A n = ∑ k = 1 n c k I E k ∩ A n + 0. I B n gI_{A_n}=\sum_{k=1}^nc_kI_{E_k\cap A_n}+0.I_{B_n} gIAn=k=1∑nckIEk∩An+0.IBn则 ∫ X g I A n d μ = ∑ k = 1 n c k μ ( E k ∩ A n ) \int_XgI_{A_n}d\mu=\sum_{k=1}^n c_k \mu(E_k\cap A_n) ∫XgIAndμ=k=1∑nckμ(Ek∩An)由测度的下连续性,就有
lim n → ∞ ∫ X g I A n d μ = lim n → ∞ ∑ k = 1 n c k μ ( E k ∩ A n ) = ∑ k = 1 n c k lim n → ∞ μ ( E k ∩ A n ) = ∑ k = 1 n c k μ ( E k ) = ∫ X g d μ \begin{aligned} &\lim_{n\to\infty}\int_XgI_{A_n}d\mu=\lim_{n\to\infty}\sum_{k=1}^n c_k \mu(E_k\cap A_n)\\=&\sum_{k=1}^n c_k\lim_{n\to\infty}\mu(E_k\cap A_n)=\sum_{k=1}^nc_k\mu(E_k)=\int_Xgd\mu \end{aligned} =n→∞lim∫XgIAndμ=n→∞limk=1∑nckμ(Ek∩An)k=1∑nckn→∞limμ(Ek∩An)=k=1∑nckμ(Ek)=∫Xgdμ并且 ∫ X f n I A n d μ ≥ c ∫ X g I A n d μ \int_Xf_nI_{A_n}d\mu\ge c\int_XgI_{A_n}d\mu ∫XfnIAndμ≥c∫XgIAndμ故 ∫ X f n d μ ≥ c ∫ X g I A n d μ \int_X f_nd\mu\ge c\int_XgI_{A_n}d\mu ∫Xfndμ≥c∫XgIAndμ两边令 n → ∞ n\to\infty n→∞,有 lim n → ∞ ∫ X f n d μ ≥ c ∫ X g d μ \lim_{n\to\infty}\int_X f_nd\mu\ge c\int_Xgd\mu n→∞lim∫Xfndμ≥c∫Xgdμ再令 c → 1 c\to 1 c→1,就有 lim n → ∞ ∫ X f n d μ ≥ ∫ X g d μ \lim_{n\to\infty}\int_X f_nd\mu\ge \int_Xgd\mu n→∞lim∫Xfndμ≥∫Xgdμ
非负可测函数的积分
由简单函数逼近定理,对任意非负可测函数 f f f,存在渐升的非负简单函数列 { f n } \{f_n\} {fn}, f n ↑ f f_n\uparrow f fn↑f,则我们可以定义非负可测函数 f f f的积分为 ∫ X f d μ = lim n → ∞ ∫ X f n d μ \int_Xfd\mu=\lim_{n\to\infty}\int_Xf_nd\mu ∫Xfdμ=n→∞lim∫Xfndμ
- 该定义是良定义:所谓的良定义是指:无论选取何种渐升的非负简单函数列 { f n } \{f_n\} {fn},只要 f n ↑ f f_n\uparrow f fn↑f,所得到的积分值是相等的。对两个非负渐升的简单函数列 { f n } \{f_n\} {fn}和 { g n } \{g_n\} {gn},并且处处成立 lim n → ∞ f n = lim n → ∞ g n \displaystyle \lim_{n\to\infty}f_n=\lim_{n\to\infty}g_n n→∞limfn=n→∞limgn,那么对任意的 m ≥ 1 m\ge 1 m≥1,都有 f m ≤ lim n → ∞ g n g m ≤ lim n → ∞ f n f_m\le \lim_{n\to\infty} g_n\\ g_m\le \lim_{n\to\infty} f_n fm≤n→∞limgngm≤n→∞limfn因此,由非负简单函数积分的性质,就有 ∫ X f m d μ ≤ lim n → ∞ ∫ X g n d μ ∫ X g m d μ ≤ lim n → ∞ ∫ X f n d μ \int_Xf_md\mu\le\lim_{n\to\infty}\int_X g_nd\mu\\ \int_Xg_md\mu\le \lim_{n\to\infty}\int_X f_nd\mu ∫Xfmdμ≤n→∞lim∫Xgndμ∫Xgmdμ≤n→∞lim∫Xfndμ两边令 m → ∞ m\to\infty m→∞,就有 lim m → ∞ ∫ X f m d μ ≤ lim n → ∞ ∫ X g n d μ lim m → ∞ ∫ X g m d μ ≤ lim n → ∞ ∫ X f n d μ \lim_{m\to\infty}\int_X f_md\mu\le \lim_{n\to\infty}\int_Xg_nd\mu\\ \lim_{m\to\infty}\int_X g_md\mu\le \lim_{n\to\infty}\int_X f_nd\mu m→∞lim∫Xfmdμ≤n→∞lim∫Xgndμm→∞lim∫Xgmdμ≤n→∞lim∫Xfndμ这就得到 lim n → ∞ ∫ X f n d μ = lim n → ∞ ∫ X g n d μ \lim_{n\to\infty}\int_X f_nd\mu=\lim_{n\to\infty}\int_X g_nd\mu n→∞lim∫Xfndμ=n→∞lim∫Xgndμ
- 由1,非负可测函数的积分与所选取的渐升非负简单函数列无关,故计算积分值时,选取任意的渐升非负简单函数列都是可以的。如果选取的是我们证明简单函数逼近定理时的渐升非负简单函数列,那么就有 ∫ X f d μ = lim n → ∞ [ ∑ k = 1 n 2 n − 1 k 2 n μ { k 2 n ≤ f < k + 1 2 n } + n μ { f ≥ n } ] \int_Xfd\mu=\lim_{n\to\infty}\left[\sum_{k=1}^{n2^n-1}\frac{k}{2^n}\mu\{\frac{k}{2^n}\le f < \frac{k+1}{2^n}\}+n\mu\{f\ge n\}\right] ∫Xfdμ=n→∞lim[k=1∑n2n−12nkμ{2nk≤f<2nk+1}+nμ{f≥n}]这里选取的非负简单函数列为 { h n } \{h_n\} {hn},其中 h n = ∑ k = 0 n . 2 n − 1 k 2 n I { k 2 n ≤ f < k + 1 2 n } + n I { f ≥ n } h_n=\sum_{k=0}^{n.2^n-1}\frac{k}{2^n}I_{\{\frac{k}{2^n}\le f < \frac{k+1}{2^n}\}}+nI_{\{f\ge n\}} hn=k=0∑n.2n−12nkI{2nk≤f<2nk+1}+nI{f≥n}后面沿用这个记号
- 该定义还有一个等价定义 ∫ X f d μ = sup { ∫ X g d μ : g ≤ f , g 是 非 负 简 单 函 数 } \int_Xfd\mu=\sup\{\int_Xgd\mu:g\le f,g是非负简单函数\} ∫Xfdμ=sup{∫Xgdμ:g≤f,g是非负简单函数}
证:我们记 I = ∫ X f d μ = sup { ∫ X g d μ : g ≤ f , g 是 非 负 简 单 函 数 } I= \int_Xfd\mu=\sup\{\int_Xgd\mu:g\le f,g是非负简单函数\} I=∫Xfdμ=sup{∫Xgdμ:g≤f,g是非负简单函数}任取一列渐升的非负简单函数列 { f n } \{f_n\} {fn},并且 f n ↑ f f_n\uparrow f fn↑f,则 f n ≤ f f_n\le f fn≤f,由 I I I的定义,就有 ∫ X f n d μ ≤ I \int_X f_nd\mu\le I ∫Xfndμ≤I令 n → ∞ n\to\infty n→∞,就有 ∫ X f d μ ≤ I \int_X fd\mu \le I ∫Xfdμ≤I反之,我们分两种情况讨论:
情形1:当 I = + ∞ I=+\infty I=+∞时,存在非负简单函数列 { f n } \{f_n\} {fn}, f n ≤ f f_n\le f fn≤f,并且 lim n → ∞ ∫ X f n d μ = + ∞ \lim_{n\to\infty}\int_X f_nd\mu=+\infty n→∞lim∫Xfndμ=+∞令 g n = max { f 1 , f 2 , ⋯ , f n , h n } g_n=\max\{f_1,f_2,\cdots,f_n,h_n\} gn=max{f1,f2,⋯,fn,hn},容易验证 g n g_n gn也是非负简单函数,并且 { g n } \{g_n\} {gn}是渐升的,同时,由于 f 1 ≤ f , f 2 ≤ f , ⋯ , f n ≤ f , h n ≤ f f_1\le f,f_2\le f,\cdots,f_n\le f,h_n\le f f1≤f,f2≤f,⋯,fn≤f,hn≤f故 g n ≤ f g_n\le f gn≤f,而 g n ≥ h n g_n\ge h_n gn≥hn,由夹逼准则, lim n → ∞ g n = f \displaystyle \lim_{n\to\infty}g_n= f n→∞limgn=f,则 lim n → ∞ ∫ X g n d μ = + ∞ = ∫ X f d μ \lim_{n\to\infty}\int_X g_nd\mu=+\infty=\int_X fd\mu n→∞lim∫Xgndμ=+∞=∫Xfdμ情形2:当 I < + ∞ I<+\infty I<+∞时,存在非负简单函数列 { f n } \{f_n\} {fn}, f n ≤ f f_n\le f fn≤f,并且 ∫ X f n d μ > I − 1 n \int_X f_nd\mu>I-\frac{1}{n} ∫Xfndμ>I−n1如同情形1一样构造 { g n } \{g_n\} {gn},则 I − 1 n < ∫ X f n d μ ≤ ∫ X g n d μ ≤ I I-\frac{1}{n}<\int_Xf_nd\mu\le\int_X g_nd\mu\le I I−n1<∫Xfndμ≤∫Xgndμ≤I由夹逼准则 lim n → ∞ ∫ X g n d μ = ∫ X f d μ = I \lim_{n\to\infty}\int_Xg_nd\mu=\int_X fd\mu=I n→∞lim∫Xgndμ=∫Xfdμ=I
- 若 f f f是一个非负简单函数,则 ∫ X f d μ \displaystyle\int_Xfd\mu ∫Xfdμ是良定义的,也就是说,无论采取上节的定义,还是本节的定义,得到的积分值是一致的,这由注3容易验证,这里省略
- 非负可测函数积分的性质:
性质1(非负性): f f f是非负可测函数,则 ∫ X f d μ ≥ 0 \displaystyle\int_X fd\mu\ge 0 ∫Xfdμ≥0
性质2(线性性质): f , g f,g f,g是两个非负可测函数, a , b a,b a,b是两个非负实数,则 ∫ X ( a f + b g ) d μ = a ∫ X f d μ + b ∫ X g d μ \int_X(af+bg)d\mu=a\int_Xfd\mu+b\int_Xgd\mu ∫X(af+bg)dμ=a∫Xfdμ+b∫Xgdμ性质3(不等式性质) : f , g f,g f,g是两个非负可测函数,并且处处成立 f ≤ g f\le g f≤g,则 ∫ X f d μ ≤ ∫ X g d μ \int_X fd\mu\le \int_X gd\mu ∫Xfdμ≤∫Xgdμ
一般可测函数的积分
对于一般的可测函数,我们定义其积分为 ∫ X f d μ = ∫ X f + d μ − ∫ X f − d μ \int_Xfd\mu=\int_X f^+d\mu-\int_X f^-d\mu ∫Xfdμ=∫Xf+dμ−∫Xf−dμ当然前提是要这个式子有意义,这个式子有意义的充要条件是 min { ∫ X f + d μ , ∫ X f − d μ } < + ∞ \min\{\int_X f^+d\mu,\int_X f^-d\mu\}<+\infty min{∫Xf+dμ,∫Xf−dμ}<+∞此时我们称 f f f积分存在,如果 max { ∫ X f + d μ , ∫ X f − d μ } < + ∞ \max\{\int_X f^+d\mu,\int_X f^-d\mu\}<+\infty max{∫Xf+dμ,∫Xf−dμ}<+∞则这个积分还是实数,此时我们称 f f f可积
- 任意可测集上的积分:如果 A A A是可测集, f f f是可测函数,则如果 f I A fI_A fIA积分存在或可积,就称 f f f在 A A A上积分存在或可积,积分值记为 ∫ A f d μ = ∫ X f I A d μ \int_Afd\mu=\int_X fI_Ad\mu ∫Afdμ=∫XfIAdμ
- 几乎处处定义的可测函数的积分: f f f虽然不是可测函数,但其与可测函数 h h h几乎处处相等,如果 h h h积分存在或可积,我们称 f f f积分存在或可积,积分值为 ∫ X h d μ \int_X hd\mu ∫Xhdμ,后面我们将证明这一定义是良定义
积分的性质
定理4.1(可积的充要条件)
f
f
f为可测函数.
(1) 如果
f
f
f的积分存在,则
∣
∫
X
f
d
μ
∣
≤
∫
X
∣
f
∣
d
μ
\displaystyle\left|\int_Xfd\mu\right|\le \int_X|f|d\mu
∣∣∣∣∫Xfdμ∣∣∣∣≤∫X∣f∣dμ
(2)
f
f
f可积当且仅当
∣
f
∣
|f|
∣f∣可积
(3) 如果
f
f
f可积,则
f
f
f几乎处处有限
证:
(1)如果 ∫ X f d μ = + ∞ \displaystyle\int_Xfd\mu=+\infty ∫Xfdμ=+∞,则 ∫ X f + d μ = + ∞ , ∫ X f − d μ < + ∞ \displaystyle\int_Xf^+d\mu=+\infty,\int_Xf^-d\mu<+\infty ∫Xf+dμ=+∞,∫Xf−dμ<+∞,因此 ∫ X ∣ f ∣ d μ = ∫ X f + d μ + ∫ X f − d μ = + ∞ \int_X|f|d\mu=\int_Xf^+d\mu+\int_Xf^-d\mu=+\infty ∫X∣f∣dμ=∫Xf+dμ+∫Xf−dμ=+∞故 ∣ ∫ X f d μ ∣ = ∫ X ∣ f ∣ d μ \left|\int_Xfd\mu\right|=\int_X|f|d\mu ∣∣∣∣∫Xfdμ∣∣∣∣=∫X∣f∣dμ而 ∫ X f d μ = − ∞ \displaystyle\int_Xfd\mu=-\infty ∫Xfdμ=−∞时也是类似的,当 f f f可积时,由三角不等式 ∣ ∫ X f d μ ∣ = ∣ ∫ X f + d μ − ∫ X f − d μ ∣ ≤ ∫ X f + d μ + ∫ X f − d μ = ∫ X ∣ f ∣ d μ \left|\int_Xfd\mu\right|=\left|\int_Xf^+d\mu-\int_Xf^-d\mu\right|\le\int_Xf^+d\mu+\int_Xf^-d\mu=\int_X|f|d\mu ∣∣∣∣∫Xfdμ∣∣∣∣=∣∣∣∣∫Xf+dμ−∫Xf−dμ∣∣∣∣≤∫Xf+dμ+∫Xf−dμ=∫X∣f∣dμ(2) f f f可积的充要条件是 ∫ X f + d μ < + ∞ , ∫ X f − d μ < + ∞ \int_Xf^+d\mu<+\infty,\int_Xf^-d\mu<+\infty ∫Xf+dμ<+∞,∫Xf−dμ<+∞而 ∫ X ∣ f ∣ d μ = ∫ X f + d μ + ∫ X f − d μ \int_X|f|d\mu=\int_Xf^+d\mu+\int_Xf^-d\mu ∫X∣f∣dμ=∫Xf+dμ+∫Xf−dμ故由此不难得出 f f f可积当且仅当 ∣ f ∣ |f| ∣f∣可积
(3)如果 f f f非负, f f f不几乎处处有限,那么 μ { f = + ∞ } = μ ( ⋂ n = 1 ∞ { f ≥ n } ) = δ > 0 \displaystyle\mu\{f=+\infty\}=\mu\left(\bigcap_{n=1}^\infty\{f\ge n\}\right)=\delta>0 μ{f=+∞}=μ(n=1⋂∞{f≥n})=δ>0,那么由单调性,对任意的 n ≥ 1 n\ge 1 n≥1,都有 μ { f ≥ n } ≥ μ { f = + ∞ } = δ \mu\{f\ge n\}\ge \mu\{f=+\infty\}=\delta μ{f≥n}≥μ{f=+∞}=δ因此 ∫ X f d μ = lim n → ∞ [ ∑ k = 1 n . 2 n − 1 k n . 2 n μ { k n . 2 n ≤ f < k + 1 n . 2 n } + n μ { f ≥ n } ] ≥ lim n → ∞ n μ { f ≥ n } ≥ δ lim n → ∞ n = + ∞ \begin{aligned} &\int_Xfd\mu=\lim_{n\to\infty}\left[\sum_{k=1}^{n.2^n-1}\frac{k}{n.2^n}\mu\{\frac{k}{n.2^n}\le f<\frac{k+1}{n.2^n}\}+n\mu\{f\ge n\}\right]\\\ge&\lim_{n\to\infty}n\mu\{f\ge n\}\ge \delta\lim_{n\to\infty}n=+\infty \end{aligned} ≥∫Xfdμ=n→∞lim[k=1∑n.2n−1n.2nkμ{n.2nk≤f<n.2nk+1}+nμ{f≥n}]n→∞limnμ{f≥n}≥δn→∞limn=+∞ f f f不可积,因此,如果 f f f可积,则 f f f几乎处处有限
对一般的可测函数, f f f可积的充要条件是 ∣ f ∣ |f| ∣f∣可积,则 f f f可积, ∣ f ∣ |f| ∣f∣几乎处处有限, f f f也几乎处处有限
定理4.2
f
,
g
f,g
f,g是可测函数.
(1)对任意的可测集
A
A
A,并且
μ
(
A
)
=
0
\mu(A)=0
μ(A)=0,有
∫
A
f
d
μ
=
0
\int_Afd\mu=0
∫Afdμ=0(2)如果
f
,
g
f,g
f,g积分存在且
f
≥
g
a
.
e
f\ge g \quad a.e
f≥ga.e,则
∫
X
f
d
μ
≥
∫
X
g
d
μ
\displaystyle\int_Xfd\mu\ge\int_Xgd\mu
∫Xfdμ≥∫Xgdμ
(3)如果
f
,
g
f,g
f,g几乎处处相等,那么只要其中一个积分存在,另一个积分也存在而且两个积分值相等
证:
(1) 如果 f f f在 A A A上非负,对任意的非负简单函数 g ≤ f I A g\le fI_A g≤fIA,则 g g g几乎处处为0,显然 ∫ X g d μ = 0 \displaystyle\int_Xgd\mu=0 ∫Xgdμ=0,故 ∫ A f d μ = 0 \displaystyle\int_Afd\mu=0 ∫Afdμ=0,对一般的可测函数 f f f, f + I A , f − I A f^+I_A,f^-I_A f+IA,f−IA也几乎处处为0,由此可得 ∫ X ( f I A ) + d μ = ∫ X f + I A d μ = 0 , ∫ X ( f I A ) − d μ = ∫ X f − I A d μ = 0 \displaystyle\int_X(fI_A)^+d\mu=\int_Xf^+I_Ad\mu=0,\int_X(fI_A)^-d\mu=\int_Xf^-I_Ad\mu=0 ∫X(fIA)+dμ=∫Xf+IAdμ=0,∫X(fIA)−dμ=∫Xf−IAdμ=0,故 ∫ A f d μ = ∫ X f I A d μ = 0 \displaystyle\int_Afd\mu=\int_XfI_Ad\mu=0 ∫Afdμ=∫XfIAdμ=0
(2) 如果 f , g f,g f,g非负, f ≥ g a . e f\ge g \quad a.e f≥ga.e,则令 A = { f ≥ g } B = { f < g } A=\{f\ge g\}\\ B=\{f<g\} A={f≥g}B={f<g}则 μ ( B ) = 0 \mu(B)=0 μ(B)=0,并且 ∫ X f d μ = ∫ X f I A d μ + ∫ X f I B d μ = ∫ X f I A d μ ∫ X g d μ = ∫ X g I A d μ + ∫ X g I B d μ = ∫ X g I A d μ \int_Xfd\mu=\int_XfI_Ad\mu+\int_XfI_Bd\mu=\int_XfI_Ad\mu\\ \int_Xgd\mu=\int_XgI_Ad\mu+\int_XgI_Bd\mu=\int_XgI_Ad\mu ∫Xfdμ=∫XfIAdμ+∫XfIBdμ=∫XfIAdμ∫Xgdμ=∫XgIAdμ+∫XgIBdμ=∫XgIAdμ而 f I A ≥ g I B fI_A\ge gI_B fIA≥gIB故 ∫ X f d μ = ∫ X f I A d μ ≥ ∫ X g I A d μ = ∫ X g d μ \int_Xfd\mu=\int_XfI_Ad\mu\ge \int_XgI_Ad\mu=\int_Xgd\mu ∫Xfdμ=∫XfIAdμ≥∫XgIAdμ=∫Xgdμ当 f , g f,g f,g为一般可测函数时, f ≥ g a . e . f\ge g \quad a.e. f≥ga.e.,则不难推出 f + ≥ g + , f − ≤ g − a . e . f^+\ge g^+,f^-\le g^-\quad a.e. f+≥g+,f−≤g−a.e.,就有 ∫ X f + d μ ≤ ∫ X g + d μ ∫ X f − d μ ≥ ∫ X g − d μ \int_Xf^+d\mu\le \int_Xg^+d\mu\\ \int_Xf^-d\mu\ge \int_Xg^-d\mu ∫Xf+dμ≤∫Xg+dμ∫Xf−dμ≥∫Xg−dμ就可以证得结论
(3) f = g a . e . f=g\quad a.e. f=ga.e.等价于 f ≥ g , f ≤ g a . e f\ge g,f\le g\quad a.e f≥g,f≤ga.e,再套用结论(2)即可
设 f f f为几乎处处定义的可测函数,那么设 f = g = h f=g=h f=g=h, g , h g,h g,h为可测函数,那么 g , h g,h g,h几乎处处相等,那么应该同时积分存在或可积,并且积分值相等,那么对 f f f的积分定义是良定义,也就是说,不与所选择的可测函数有关。定理4.2还说明了:如果在一个零测集上改变可测函数的值,不改变积分的存在性,不改变可积性,不改变积分的值。
定理4.3 f f f是可测函数,如果 f f f几乎处处为0,则 ∫ X f d μ = 0 \displaystyle\int_Xfd\mu=0 ∫Xfdμ=0,反正,如果 f ≥ 0 a . e . f\ge 0\quad a.e. f≥0a.e., ∫ X f d μ = 0 \displaystyle\int_Xfd\mu=0 ∫Xfdμ=0,则 f = 0 a . e f=0 \quad a.e f=0a.e
证:
(1) 如果 f = 0 a . e . f = 0 \quad a.e. f=0a.e.,则 f = f I { f ≠ 0 } f=fI_{\{f\neq 0\}} f=fI{f=0},而 μ { f ≠ 0 } = 0 \mu\{f\neq 0\}=0 μ{f=0}=0,因此 ∫ X f d μ = ∫ X f I { f ≠ 0 } d μ = 0 \int_X fd\mu=\int_X fI_{\{f\neq 0\}}d\mu=0 ∫Xfdμ=∫XfI{f=0}dμ=0(2) 如果 f ≥ 0 f\ge 0 f≥0处处成立, ∫ X f d μ = 0 \displaystyle\int_Xfd\mu=0 ∫Xfdμ=0,如果 f f f不几乎处处为0,则 μ { f ≠ 0 } = μ ( ⋃ n = 1 ∞ { f ≥ 1 n } ) > 0 \mu\{f\neq 0\}=\mu\left(\bigcup_{n=1}^\infty\{f\ge\frac{1}{n}\}\right)>0 μ{f=0}=μ(n=1⋃∞{f≥n1})>0则存在正整数 n 0 n_0 n0,有 μ { f ≥ 1 n 0 } > 0 \mu\{f\ge\frac{1}{n_0}\}>0 μ{f≥n01}>0而 f ≥ 1 n 0 I { f ≥ 1 n 0 } f\ge \frac{1}{n_0}I_{\{f\ge \frac{1}{n_0}\}} f≥n01I{f≥n01}因此 ∫ X f d μ ≥ μ { f ≥ 1 n 0 } n 0 > 0 \int_Xfd\mu\ge\frac{\mu\{f\ge \frac{1}{n_0}\}}{n_0}>0 ∫Xfdμ≥n0μ{f≥n01}>0矛盾,因此 f = 0 a . e . f=0\quad a.e. f=0a.e.
而如果 f ≥ 0 a . e f\ge 0\quad a.e f≥0a.e,并且 ∫ X f d μ = 0 \displaystyle \int_X fd\mu=0 ∫Xfdμ=0,则令 A = { f ≥ 0 } B = { f < 0 } A=\{f\ge 0\}\\ B=\{f<0\} A={f≥0}B={f<0}由于 μ ( B ) = 0 \mu(B)=0 μ(B)=0,就有 ∫ X f d μ = ∫ X f I A d μ + ∫ X f I B d μ = ∫ X f I A d μ = 0 \int_Xfd\mu=\int_XfI_Ad\mu+\int_XfI_Bd\mu=\int_XfI_Ad\mu=0 ∫Xfdμ=∫XfIAdμ+∫XfIBdμ=∫XfIAdμ=0而 f I A ≥ 0 fI_A\ge 0 fIA≥0处处成立,因此, f I A = 0 , f = f I A a . e . fI_A=0,f=fI_A\quad a.e. fIA=0,f=fIAa.e.,故 f = 0 a . e f=0\quad a.e f=0a.e
定理4.4
f
,
g
f,g
f,g是积分存在的可测函数.
(1)对任意的
a
∈
R
a\in R
a∈R,
a
f
af
af的积分存在,并且
∫
X
(
a
f
)
d
μ
=
a
∫
X
f
d
μ
\displaystyle\int_X (af)d\mu=a\int_Xfd\mu
∫X(af)dμ=a∫Xfdμ
(2)如果
∫
X
f
d
μ
+
∫
X
g
d
μ
\displaystyle\int_Xfd\mu+\int_Xgd\mu
∫Xfdμ+∫Xgdμ有意义,那么
f
+
g
f+g
f+g为几乎处处定义的可测函数,积分存在,并且
∫
X
(
f
+
g
)
d
μ
=
∫
X
f
d
μ
+
∫
X
g
d
μ
\int_X(f+g)d\mu=\int_Xfd\mu+\int_Xgd\mu
∫X(f+g)dμ=∫Xfdμ+∫Xgdμ
证:
(1) a = 0 a=0 a=0时, a f = 0 af=0 af=0,则结论是显然的,我们就 a > 0 a>0 a>0的情况给出证明, a < 0 a<0 a<0情况下的证明是类似的。
a f > 0 af>0 af>0等价于 f > 0 f>0 f>0,故 ( a f ) + = a f + , ( a f ) − = a f − (af)^+=af^+,(af)^-=af^- (af)+=af+,(af)−=af−再利用非负可测函数积分的性质即可证得(1)
(2)
①先证明 f + g f+g f+g几乎处处有定义,分三种情况讨论:
情形1: ∫ X f d μ = + ∞ , ∫ X g d μ > − ∞ \displaystyle \int_Xfd\mu=+\infty,\int_Xgd\mu>-\infty ∫Xfdμ=+∞,∫Xgdμ>−∞,则 ∫ X f + d μ = + ∞ , ∫ X f − d μ < + ∞ , ∫ X g − d μ < + ∞ \int_Xf^+d\mu=+\infty,\int_Xf^-d\mu<+\infty,\int_Xg^-d\mu<+\infty ∫Xf+dμ=+∞,∫Xf−dμ<+∞,∫Xg−dμ<+∞由 ∫ X f − d μ < + ∞ \displaystyle\int_Xf^-d\mu<+\infty ∫Xf−dμ<+∞, f > − ∞ a . e . f>-\infty\quad a.e. f>−∞a.e.,由 ∫ X g − d μ < + ∞ \displaystyle\int_Xg^-d\mu<+\infty ∫Xg−dμ<+∞, g > − ∞ a . e . g>-\infty\quad a.e. g>−∞a.e., f + g f+g f+g无意义有两种情况:一是 f = + ∞ , g = − ∞ f=+\infty,g=-\infty f=+∞,g=−∞,二是 f = − ∞ , g = + ∞ f=-\infty,g=+\infty f=−∞,g=+∞,令 A = { f = + ∞ , g = − ∞ } ∪ { f = − ∞ , g = + ∞ } A=\{f=+\infty,g=-\infty\}\cup\{f=-\infty,g=+\infty\} A={f=+∞,g=−∞}∪{f=−∞,g=+∞}那么 0 ≤ μ ( A ) ≤ μ { f = + ∞ , g = − ∞ } + μ { f = − ∞ , g = + ∞ } ≤ μ { g = − ∞ } + μ { f = − ∞ } = 0 \begin{aligned} 0\le& \mu(A)\le\mu\{f=+\infty,g=-\infty\}+\mu\{f=-\infty,g=+\infty\}\\\le&\mu\{g=-\infty\}+\mu\{f=-\infty\}=0 \end{aligned} 0≤≤μ(A)≤μ{f=+∞,g=−∞}+μ{f=−∞,g=+∞}μ{g=−∞}+μ{f=−∞}=0故 μ ( A ) = 0 \mu(A)=0 μ(A)=0,可见 f + g f+g f+g处处有定义, ∫ X f d μ > − ∞ , ∫ X g d μ = + ∞ \displaystyle\int_Xfd\mu>-\infty,\int_Xgd\mu=+\infty ∫Xfdμ>−∞,∫Xgdμ=+∞情形同理
情形2: ∫ X f d μ = − ∞ , ∫ X g d μ < + ∞ \displaystyle\int_Xfd\mu=-\infty,\int_Xgd\mu<+\infty ∫Xfdμ=−∞,∫Xgdμ<+∞时,则有 ∫ X f − d μ = + ∞ , ∫ X f + d μ < + ∞ , ∫ X g + d μ < + ∞ \int_Xf^-d\mu=+\infty,\int_Xf^+d\mu<+\infty,\int_Xg^+d\mu<+\infty ∫Xf−dμ=+∞,∫Xf+dμ<+∞,∫Xg+dμ<+∞可以推得 f < + ∞ , g < + ∞ a . e . f<+\infty,g<+\infty\quad a.e. f<+∞,g<+∞a.e.于是 μ ( A ) = 0 \mu(A)=0 μ(A)=0, f + g f+g f+g几乎处处有定义, ∫ X f d μ < + ∞ , ∫ X g d μ = − ∞ \displaystyle\int_Xfd\mu<+\infty,\int_Xgd\mu=-\infty ∫Xfdμ<+∞,∫Xgdμ=−∞情形同理
情形3: f , g f,g f,g均可积,此时 f , g f,g f,g几乎处处有限,显然 μ ( A ) = 0 \mu(A)=0 μ(A)=0, f + g f+g f+g几乎处处有定义
f + g = ( f + g ) I A c a . e f+g=(f+g)I_{A^c}\quad a.e f+g=(f+g)IAca.e故 f + g f+g f+g为几乎处处定义的可测函数
②再证明 ∫ X ( f + g ) d μ = ∫ X f d μ + ∫ X g d μ \displaystyle\int_X(f+g)d\mu=\int_Xfd\mu+\int_Xgd\mu ∫X(f+g)dμ=∫Xfdμ+∫Xgdμ:
我们证明在 f + g f+g f+g有意义的情况下,等式 ( f + g ) + + f − + g − = ( f + g ) − + f + + g + (f+g)^++f^-+g^-=(f+g)^-+f^++g^+ (f+g)++f−+g−=(f+g)−+f++g+成立,还是分三种情况讨论:
情形1: f + g = + ∞ f+g=+\infty f+g=+∞,此时有两种可能, f = + ∞ , g > − ∞ f=+\infty,g>-\infty f=+∞,g>−∞或 f > − ∞ , g = + ∞ f>-\infty,g=+\infty f>−∞,g=+∞,仅证明前一种情况,后一种是类似的:
如果 f + g = + ∞ , f = + ∞ , g > − ∞ f+g=+\infty,f=+\infty,g>-\infty f+g=+∞,f=+∞,g>−∞,则 ( f + g ) + = + ∞ , ( f + g ) − = 0 f + = + ∞ , f − = 0 g + ≥ 0 , g − ≥ 0 (f+g)^+=+\infty,(f+g)^-=0\\ f^+=+\infty,f^-=0\\ g^+\ge0,g^-\ge 0 (f+g)+=+∞,(f+g)−=0f+=+∞,f−=0g+≥0,g−≥0由此可以得到等式两边均为 + ∞ +\infty +∞
情形2: f + g = − ∞ f+g=-\infty f+g=−∞的证明与情形1类似,等式也成立
情形3: ∣ f + g ∣ < + ∞ |f+g|<+\infty ∣f+g∣<+∞,则 f , g f,g f,g都是实数,等式自然成立
对上面的等式两边积分,就可以得到 ∫ X ( f + g ) + d μ + ∫ X f − d μ + ∫ X g − d μ = ∫ X ( f + g ) − d μ + ∫ X f + d μ + ∫ X g + d μ \int_X(f+g)^+d\mu+\int_Xf^-d\mu+\int_Xg^-d\mu=\int_X(f+g)^-d\mu+\int_Xf^+d\mu+\int_Xg^+d\mu ∫X(f+g)+dμ+∫Xf−dμ+∫Xg−dμ=∫X(f+g)−dμ+∫Xf+dμ+∫Xg+dμ分情况讨论:
情形1:如果 ∫ X f + d μ = + ∞ \displaystyle \int_X f^+d\mu=+\infty ∫Xf+dμ=+∞,那么 ∫ X f d μ = + ∞ , ∫ X g d μ > − ∞ \displaystyle\int_X fd\mu=+\infty,\int_X gd\mu>-\infty ∫Xfdμ=+∞,∫Xgdμ>−∞,因此, ∫ X f − d μ < + ∞ , ∫ X g − d μ < + ∞ \displaystyle\int_X f^-d\mu<+\infty,\int_X g^-d\mu<+\infty ∫Xf−dμ<+∞,∫Xg−dμ<+∞,由于等式成立, ∫ X ( f + g ) + d μ = + ∞ \displaystyle\int_X(f+g)^+d\mu=+\infty ∫X(f+g)+dμ=+∞,而 ( f + g ) − ≤ f − + g − (f+g)^-\le f^-+g^- (f+g)−≤f−+g−因此 ∫ X ( f + g ) − d μ ≤ ∫ X f − d μ + ∫ X g − d μ < + ∞ \int_X(f+g)^-d\mu\le \int_X f^-d\mu+\int_X g^-d\mu<+\infty ∫X(f+g)−dμ≤∫Xf−dμ+∫Xg−dμ<+∞因此 f + g f+g f+g积分存在,并且 ∫ X ( f + g ) d μ = + ∞ = ∫ X f d μ + ∫ X g d μ \int_X(f+g)d\mu=+\infty=\int_X fd\mu+\int_X gd\mu ∫X(f+g)dμ=+∞=∫Xfdμ+∫Xgdμ ∫ X g d μ = + ∞ \displaystyle\int_X gd\mu=+\infty ∫Xgdμ=+∞的情形也是类似的
情形2: ∫ X f − d μ = + ∞ 或 ∫ X g − d μ = + ∞ \displaystyle \int_X f^-d\mu=+\infty或\int_X g^-d\mu=+\infty ∫Xf−dμ=+∞或∫Xg−dμ=+∞情形的证明同情形1类似,不再重复
情形3: f , g f,g f,g均可积,那么,由 ( f + g ) + ≤ f + + g + ( f + g ) − ≤ f − + g − (f+g)^+\le f^++g^+\\ (f+g)^-\le f^-+g^- (f+g)+≤f++g+(f+g)−≤f−+g−可以知道 f + g f+g f+g也可积,移项即可证得等式
定理4.5
f
,
g
f,g
f,g是可积函数.
(1)如果
∫
A
f
d
μ
≥
∫
A
g
d
μ
\displaystyle \int_Afd\mu \ge \int_A gd\mu
∫Afdμ≥∫Agdμ对任意可测集
A
A
A都成立,则
f
≥
g
a
.
e
f\ge g\quad a.e
f≥ga.e
(2)如果
∫
A
f
d
μ
=
∫
A
g
d
μ
\displaystyle \int_Afd\mu = \int_A gd\mu
∫Afdμ=∫Agdμ对任意的可测集
A
A
A均成立,则
f
=
g
a
.
e
.
f=g \quad a.e.
f=ga.e.
证:
(1)如果 f ≥ g a . e . f\ge g\quad a.e. f≥ga.e.不成立,那么 μ { f < g } = μ ( ⋃ n = 1 ∞ { g ≥ f + 1 n } ) > 0 \displaystyle\mu\{f<g\}=\mu(\bigcup_{n=1}^\infty\{g\ge f+\frac{1}{n}\})>0 μ{f<g}=μ(n=1⋃∞{g≥f+n1})>0,存在正整数 n 0 n_0 n0,有 μ { g ≥ f + 1 n 0 } > 0 \mu\{g\ge f+\frac{1}{n_0}\}>0 μ{g≥f+n01}>0令 A = { g ≥ f + 1 n 0 } A=\{g\ge f+\frac{1}{n_0}\} A={g≥f+n01},则 ∫ A g d μ ≥ ∫ A ( f + 1 n 0 ) d μ = ∫ A f d μ + 1 n 0 μ ( A ) > ∫ A f d μ \int_Agd\mu\ge\int_A (f+\frac{1}{n_0})d\mu=\int_Afd\mu+\frac{1}{n_0}\mu(A)>\int_Afd\mu ∫Agdμ≥∫A(f+n01)dμ=∫Afdμ+n01μ(A)>∫Afdμ矛盾,因此 f ≥ g a . e . f\ge g\quad a.e. f≥ga.e.
(2)由于对任意的的可测集 A A A, ∫ A f d μ ≥ ∫ A g d μ , ∫ A g d μ ≥ ∫ A f d μ \displaystyle \int_Afd\mu\ge \int_Agd\mu,\int_Agd\mu\ge \int_Afd\mu ∫Afdμ≥∫Agdμ,∫Agdμ≥∫Afdμ同时成立,再利用结论(1)即可证得
定理4.6(积分的绝对连续性) f f f是可积函数,则 ∀ ε > 0 , ∃ δ > 0 \forall \varepsilon>0,\exists \delta>0 ∀ε>0,∃δ>0,对任意的可测集 A A A,只要 μ ( A ) < δ \mu(A)<\delta μ(A)<δ,就有 ∫ A ∣ f ∣ d μ < ε \int_A|f|d\mu<\varepsilon ∫A∣f∣dμ<ε
证:
设 f ≥ 0 f\ge 0 f≥0,且 f f f可积,如果 f f f有界,设 f ≤ M f\le M f≤M,那么对任意的正数 ε > 0 \varepsilon>0 ε>0,对任意的可测集 A A A,只要 μ ( A ) < ε M \mu(A)<\frac{\varepsilon}{M} μ(A)<Mε,那么 ∫ A f d μ = ∫ X f I A d μ ≤ M ∫ X I A d μ = M μ ( A ) < ε \int_Afd\mu=\int_XfI_Ad\mu\le M\int_XI_Ad\mu=M\mu(A)<\varepsilon ∫Afdμ=∫XfIAdμ≤M∫XIAdμ=Mμ(A)<ε如果 f f f是一般的非负可积函数,则 f f f几乎处处有限,取一列渐升非负简单函数列 { f n } \{f_n\} {fn}, f n ↑ f f_n\uparrow f fn↑f,则 lim n → ∞ ∫ X f n d μ = ∫ X f d μ \lim_{n\to\infty}\int_X f_nd\mu= \int_X fd\mu n→∞lim∫Xfndμ=∫Xfdμ对任意的 ε > 0 \varepsilon>0 ε>0,存在正整数 n 0 n_0 n0,有 ∫ X f d μ − ε 2 < ∫ X f n 0 d μ ≤ ∫ X f d μ \int_X fd\mu - \frac{\varepsilon}{2}<\int_X f_{n_0}d\mu\le\int_X fd\mu ∫Xfdμ−2ε<∫Xfn0dμ≤∫Xfdμ由于 f n 0 f_{n_0} fn0有界,存在正数 δ > 0 \delta>0 δ>0,对任意的可测集 A A A,只要 μ ( A ) < δ \mu(A)<\delta μ(A)<δ,就有 ∫ A f n 0 d μ < ε 2 \int_A f_{n_0}d\mu<\frac{\varepsilon}{2} ∫Afn0dμ<2ε而 f − f n 0 f-f_{n_0} f−fn0处处有意义,故也为非负可测函数,因此 ∫ A ( f − f n 0 ) d μ ≤ ∫ X ( f − f n 0 ) d μ < ε 2 \int_{A}(f-f_{n_0})d\mu\le\int_X(f-f_{n_0})d\mu<\frac{\varepsilon}{2} ∫A(f−fn0)dμ≤∫X(f−fn0)dμ<2ε从而 ∫ A f d μ < ∫ A f n 0 d μ + ε 2 < ε \int_A fd\mu <\int_A f_{n_0}d\mu+\frac{\varepsilon}{2}<\varepsilon ∫Afdμ<∫Afn0dμ+2ε<ε一般可积函数只要利用上面的结论即可
三大积分极限定理
本节内容讲述测度论中最实用的定理——Levi定理、Fatou引理和Lebesgue控制收敛定理,用于解决积分和极限号交换的问题。
Levi渐升列定理
定理4.7(Levi渐升列定理) { f n } \{f_n\} {fn}是几乎处处的非负渐升可测函数列,并且 f n ↑ f a . e . f_n\uparrow f\quad a.e. fn↑fa.e.,则 f f f是几乎处处定义的非负可测函数,并且 lim n → ∞ ∫ X f n d μ = ∫ X f d μ \lim_{n\to\infty}\int_X f_nd\mu=\int_X fd\mu n→∞lim∫Xfndμ=∫Xfdμ
证:
先设 { f n , n = 1 , 2 , ⋯ } \{f_n,n=1,2,\cdots\} {fn,n=1,2,⋯}和 f f f都是处处非负的,并且对任意的 x ∈ X x\in X x∈X,都有 f n ( x ) ↑ f ( x ) f_n(x)\uparrow f(x) fn(x)↑f(x),则对任意的 n ≥ 1 n\ge 1 n≥1,都有 ∫ X f n d μ ≤ ∫ X f d μ \int_X f_nd\mu \le \int_X fd\mu ∫Xfndμ≤∫Xfdμ因此 lim n → ∞ ∫ X f n d μ ≤ ∫ X f d μ \lim_{n\to\infty}\int_X f_nd\mu \le \int_X fd\mu n→∞lim∫Xfndμ≤∫Xfdμ只要证明 lim n → ∞ ∫ X f n d μ ≥ ∫ X f d μ \displaystyle\lim_{n\to\infty}\int_X f_nd\mu\ge \int_X fd\mu n→∞lim∫Xfndμ≥∫Xfdμ:对任意的 c ∈ ( 0 , 1 ) c\in(0,1) c∈(0,1),令 A n = { f n ≥ c f } A n ↑ X B n = { f n ≤ c f } B n ↓ ∅ A_n=\{f_n\ge cf\}\quad A_n\uparrow X\\ B_n=\{f_n\le cf\}\quad B_n\downarrow \emptyset An={fn≥cf}An↑XBn={fn≤cf}Bn↓∅则 ∫ X f n d μ = ∫ A n f n d μ + ∫ B n f n d μ ≥ ∫ A n f n d μ ≥ c . ∫ A n f d μ \int_Xf_nd\mu=\int_{A_n}f_nd\mu+\int_{B_n}f_nd\mu\ge\int_{A_n}f_nd\mu\ge c.\int_{A_n}fd\mu ∫Xfndμ=∫Anfndμ+∫Bnfndμ≥∫Anfndμ≥c.∫Anfdμ只要证明 lim n → ∞ ∫ A n f d μ = ∫ X f d μ \lim_{n\to\infty}\int_{A_n}fd\mu=\int_Xfd\mu n→∞lim∫Anfdμ=∫Xfdμ即可,取非负渐升简单函数列 { h n } \{h_n\} {hn}, h n ↑ f h_n\uparrow f hn↑f,则 lim n → ∞ ∫ X h n d μ = ∫ X f d μ lim n → ∞ ∫ A m h n d μ = ∫ A m f d μ \lim_{n\to\infty}\int_X h_nd\mu =\int_Xfd\mu\\ \lim_{n\to\infty}\int_{A_m} h_nd\mu=\int_{A_m}fd\mu n→∞lim∫Xhndμ=∫Xfdμn→∞lim∫Amhndμ=∫Amfdμ并且由测度的上连续性,不难证明 lim m → ∞ ∫ A m h n d μ = ∫ X h n d μ \lim_{m\to\infty}\int_{A_m}h_nd\mu=\int_X h_nd\mu m→∞lim∫Amhndμ=∫Xhndμ情形1: ∫ X f d μ = + ∞ \displaystyle\int_Xfd\mu=+\infty ∫Xfdμ=+∞,则对任意的正数 M > 0 M>0 M>0,存在正整数 n 0 n_0 n0,有 ∫ X h n 0 d μ ≥ 2 M \int_{X}h_{n_0}d\mu\ge 2M ∫Xhn0dμ≥2M存在正整数 m 0 m_0 m0,有 ∫ A m 0 h n 0 d μ ≥ M \int_{A_{m_0}}h_{n_0}d\mu\ge M ∫Am0hn0dμ≥M因此 ∫ A m 0 f d μ ≥ ∫ A m 0 h n 0 d μ ≥ M \int_{A_{m_0}}fd\mu\ge \int_{A_{m_0}}h_{n_0}d\mu\ge M ∫Am0fdμ≥∫Am0hn0dμ≥M从而 lim n → ∞ ∫ A n f d μ = + ∞ = ∫ X f d μ \lim_{n\to\infty}\int_{A_n}fd\mu=+\infty=\int_X fd\mu n→∞lim∫Anfdμ=+∞=∫Xfdμ情形2: ∫ X f d μ < + ∞ \displaystyle\int_Xfd\mu<+\infty ∫Xfdμ<+∞,首先, lim n → ∞ f d μ ≤ ∫ X f d μ \displaystyle \lim_{n\to\infty}fd\mu\le \int_X fd\mu n→∞limfdμ≤∫Xfdμ是显然成立的,只要证明 lim n → ∞ ∫ A n f d μ ≥ ∫ X f d μ \displaystyle \lim_{n\to\infty}\int_{A_n}fd\mu\ge \int_X fd\mu n→∞lim∫Anfdμ≥∫Xfdμ即可。
对于任意的 ε > 0 \varepsilon>0 ε>0,由 lim m → ∞ ∫ X h m d μ = ∫ X f d μ \displaystyle\lim_{m\to\infty}\int_Xh_md\mu=\int_Xfd\mu m→∞lim∫Xhmdμ=∫Xfdμ,存在正整数 m 0 m_0 m0,使得 ∫ X h m 0 d μ ≥ ∫ X f d μ − ε 2 \int_Xh_{m_0}d\mu\ge\int_Xfd\mu-\frac{\varepsilon}{2} ∫Xhm0dμ≥∫Xfdμ−2ε又由 lim n → ∞ ∫ A n h m 0 d μ = ∫ X h m 0 d μ \displaystyle\lim_{n\to\infty}\int_{A_n}h_{m_0}d\mu=\int_Xh_{m_0}d\mu n→∞lim∫Anhm0dμ=∫Xhm0dμ,存在正整数 N N N, n ≥ N n\ge N n≥N时,有 ∫ A n h m 0 d μ ≥ ∫ X h m 0 d μ − ε 2 \int_{A_n}h_{m_0}d\mu\ge \int_Xh_{m_0}d\mu-\frac{\varepsilon}{2} ∫Anhm0dμ≥∫Xhm0dμ−2ε则 ∫ A n f d μ ≥ ∫ X f d μ − ε \int_{A_n}fd\mu\ge \int_Xfd\mu - \varepsilon ∫Anfdμ≥∫Xfdμ−ε令 n → ∞ n\to\infty n→∞,有 lim n → ∞ ∫ A n f d μ ≥ ∫ X f d μ − ε \lim_{n\to\infty}\int_{A_n}fd\mu\ge \int_Xfd\mu - \varepsilon n→∞lim∫Anfdμ≥∫Xfdμ−ε由 ε \varepsilon ε的任意性,就有 lim n → ∞ ∫ A n f d μ ≥ ∫ X f d μ \lim_{n\to\infty}\int_{A_n}fd\mu \ge \int_Xfd\mu n→∞lim∫Anfdμ≥∫Xfdμ故 lim n → ∞ ∫ A n f d μ = ∫ X f d μ \displaystyle\lim_{n\to\infty}\int_{A_n}fd\mu=\int_Xfd\mu n→∞lim∫Anfdμ=∫Xfdμ
前面我们证明了不等式 ∫ X f n d μ ≥ c ∫ A n f d μ \displaystyle\int_Xf_nd\mu\ge c\int_{A_n}fd\mu ∫Xfndμ≥c∫Anfdμ,令 n → ∞ n\to\infty n→∞,就有 lim n → ∞ ∫ X f n d μ ≥ c ∫ X f d μ \lim_{n\to\infty}\int_{X}f_nd\mu\ge c\int_Xfd\mu n→∞lim∫Xfndμ≥c∫Xfdμ再令 c → 1 c\to 1 c→1,就有 lim n → ∞ ∫ X f n d μ ≥ ∫ X f d μ \lim_{n\to\infty}\int_{X}f_nd\mu\ge \int_Xfd\mu n→∞lim∫Xfndμ≥∫Xfdμ故 lim n → ∞ ∫ X f n d μ = ∫ X f d μ \lim_{n\to\infty}\int_{X}f_nd\mu= \int_Xfd\mu n→∞lim∫Xfndμ=∫Xfdμ如果 { f n } \{f_n\} {fn}几乎处处非负渐升,并且 f n ↑ f f_n\uparrow f fn↑f,则令 A = { f n ≥ 0 , n = 1 , 2 , ⋯ , f n ↑ f } A=\{f_n\ge0,n=1,2,\cdots,f_n\uparrow f\} A={fn≥0,n=1,2,⋯,fn↑f}则 μ ( A c ) = 0 \mu(A^c)=0 μ(Ac)=0,令 f n ‾ = f n I A , n = 1 , 2 , ⋯ , f ‾ = f I A \overline{f_n}=f_nI_{A},n=1,2,\cdots,\overline{f}=fI_A fn=fnIA,n=1,2,⋯,f=fIA,则 f n ‾ \overline{f_n} fn非负可测并且 f n ‾ ↑ f ‾ \overline{f_n}\uparrow \overline{f} fn↑f,就有 ∫ X f n d μ = ∫ X f n ‾ d μ ↑ ∫ X f ‾ d μ = ∫ X f d μ \int_Xf_nd\mu=\int_X\overline{f_n}d\mu\uparrow \int_X\overline{f}d\mu=\int_Xfd\mu ∫Xfndμ=∫Xfndμ↑∫Xfdμ=∫Xfdμ
推论4.1(求和号与积分号交换) { f n } \{f_n\} {fn}为非负可测函数列(几乎处处非负的可测函数列),则 ∫ X ∑ n = 1 ∞ f n d μ = ∑ n = 1 ∞ ∫ X f n d μ \int_X\sum_{n=1}^\infty f_nd\mu=\sum_{n=1}^\infty\int_Xf_nd\mu ∫Xn=1∑∞fndμ=n=1∑∞∫Xfndμ
推论4.2(区间可列可加性) f f f是积分存在的可测函数, { A n , n = 1 , 2 , ⋯ } \{A_n,n=1,2,\cdots\} {An,n=1,2,⋯}是可测集 A A A的一个可列可测分割,则 ∫ A f d μ = ∑ n = 1 ∞ ∫ A n f d μ \int_Afd\mu=\sum_{n=1}^\infty\int_{A_n}fd\mu ∫Afdμ=n=1∑∞∫Anfdμ
Fatou引理
定理4.8(Fatou引理) 对于任何几乎处处非负的可测函数列 { f n , n = 1 , 2 , ⋯ } \{f_n,n=1,2,\cdots\} {fn,n=1,2,⋯},都有 ∫ X lim inf n → ∞ f n d μ ≤ lim inf n → ∞ ∫ X f n d μ \int_X\liminf_{n\to\infty}f_nd\mu\le \liminf_{n\to\infty}\int_Xf_nd\mu ∫Xn→∞liminffndμ≤n→∞liminf∫Xfndμ
证:
只要证明了 { f n , n = 1 , 2 , ⋯ } \{f_n,n=1,2,\cdots\} {fn,n=1,2,⋯}处处非负的情形成立即可,则 lim inf n → ∞ f n = lim n → ∞ inf k ≥ n f k \displaystyle \liminf_{n\to\infty}f_n=\lim_{n\to\infty}\inf_{k\ge n}f_k n→∞liminffn=n→∞limk≥ninffk, { inf k ≥ n f k , n = 1 , 2 , ⋯ } \displaystyle\{\inf_{k\ge n}f_k,n=1,2,\cdots\} {k≥ninffk,n=1,2,⋯}非负渐升,由Levi定理 ∫ X lim inf n → ∞ f n d μ = lim n → ∞ ∫ X inf k ≥ n f k d μ \int_X\liminf_{n\to\infty}f_nd\mu=\lim_{n\to\infty}\int_X\inf_{k\ge n}f_kd\mu ∫Xn→∞liminffndμ=n→∞lim∫Xk≥ninffkdμ而对 n ≥ 1 n\ge 1 n≥1,有 inf k ≥ n f k ≤ f n \inf_{k\ge n}f_k\le f_n k≥ninffk≤fn故 ∫ X inf k ≥ n f k d μ ≤ ∫ X f n d μ \int_X\inf_{k\ge n}f_kd\mu \le \int_X f_nd\mu ∫Xk≥ninffkdμ≤∫Xfndμ两边取下极限,就有 lim n → ∞ ∫ X inf k ≥ n f k d μ ≤ lim inf n → ∞ ∫ X f n d μ \lim_{n\to\infty}\int_X\inf_{k\ge n}f_kd\mu \le \liminf_{n\to\infty}\int_Xf_nd\mu n→∞lim∫Xk≥ninffkdμ≤n→∞liminf∫Xfndμ就有 ∫ X lim inf n → ∞ f n d μ = lim n → ∞ ∫ X inf k ≥ n f k d μ ≤ lim inf n → ∞ ∫ X f n d μ \int_X\liminf_{n\to\infty}f_nd\mu=\lim_{n\to\infty}\int_X\inf_{k\ge n}f_kd\mu\le \liminf_{n\to\infty}\int_Xf_nd\mu ∫Xn→∞liminffndμ=n→∞lim∫Xk≥ninffkdμ≤n→∞liminf∫Xfndμ证毕
推论4.3(Fatou引理的推广)
{
f
n
,
n
=
1
,
2
,
⋯
}
\{f_n,n=1,2,\cdots\}
{fn,n=1,2,⋯}是可测函数列.
(1)如果存在可积函数
g
g
g,使得
f
n
≥
g
a
.
e
.
,
n
=
1
,
2
,
⋯
f_n\ge g\quad a.e.,n=1,2,\cdots
fn≥ga.e.,n=1,2,⋯,则
lim inf
n
→
∞
f
n
\displaystyle\liminf_{n\to\infty}f_n
n→∞liminffn积分存在并且
∫
X
lim inf
n
→
∞
f
n
d
μ
≤
lim inf
n
→
∞
∫
X
f
n
d
μ
\int_X\liminf_{n\to\infty}f_nd\mu\le\liminf_{n\to\infty}\int_Xf_nd\mu
∫Xn→∞liminffndμ≤n→∞liminf∫Xfndμ(2)如果存在可积函数
g
g
g,使得
f
n
≤
g
a
.
e
.
,
n
=
1
,
2
,
⋯
f_n\le g\quad a.e.,n=1,2,\cdots
fn≤ga.e.,n=1,2,⋯,则
lim sup
n
→
∞
f
n
\displaystyle \limsup_{n\to\infty}f_n
n→∞limsupfn积分存在并且
lim sup
n
→
∞
∫
X
f
n
d
μ
≤
∫
X
lim sup
n
→
∞
f
n
d
μ
\limsup_{n\to\infty}\int_Xf_nd\mu\le\int_X\limsup_{n\to\infty}f_nd\mu
n→∞limsup∫Xfndμ≤∫Xn→∞limsupfndμ
证:
(1)由 g g g可积, g g g几乎处处有限,不妨就设 g g g处处有限,则 f n − g f_n-g fn−g处处有意义且非负,故 { f n − g , n = 1 , 2 , ⋯ } \{f_n-g,n=1,2,\cdots\} {fn−g,n=1,2,⋯}是是几乎处处非负的可测函数,则 ∫ X lim inf n → ∞ ( f n − g ) d μ = ∫ X ( lim inf n → ∞ f n − g ) d μ = ∫ X lim inf n → ∞ f n d μ − ∫ X g d μ ≤ lim inf n → ∞ ∫ X ( f n − g ) d μ = lim inf n → ∞ ∫ X f n d μ − ∫ X g d μ \begin{aligned} &\int_X\liminf_{n\to\infty}(f_n-g)d\mu=\int_X(\liminf_{n\to\infty}f_n - g) d\mu\\=& \int_X\liminf_{n\to\infty}f_nd\mu - \int_X gd\mu\\ \le& \liminf_{n\to\infty} \int_X(f_n-g)d\mu=\liminf_{n\to\infty}\int_Xf_nd\mu - \int_Xgd\mu \end{aligned} =≤∫Xn→∞liminf(fn−g)dμ=∫X(n→∞liminffn−g)dμ∫Xn→∞liminffndμ−∫Xgdμn→∞liminf∫X(fn−g)dμ=n→∞liminf∫Xfndμ−∫Xgdμ故 ∫ X lim inf n → ∞ f n d μ ≤ lim inf n → ∞ ∫ X f n d μ \int_X\liminf_{n\to\infty}f_nd\mu\le\liminf_{n\to\infty}\int_Xf_nd\mu ∫Xn→∞liminffndμ≤n→∞liminf∫Xfndμ(2)的证明和(1)类似,省略
Lebesgue控制收敛定理
定理4.8(Lebesgue控制收敛定理) { f n } \{f_n\} {fn}是可积函数列, f n → a . e . f f_n\xrightarrow{a.e.}f fna.e.f或 f n → μ f f_n\xrightarrow{\mu}f fnμf,存在非负可积函数 g g g,满足 ∣ f n ∣ ≤ g a . e . n = 1 , 2 , ⋯ |f_n|\le g \quad a.e. \quad n=1,2,\cdots ∣fn∣≤ga.e.n=1,2,⋯则 f f f可积,同时有 lim n → ∞ ∫ X f n d μ = ∫ X f d μ \lim_{n\to\infty}\int_Xf_nd\mu=\int_Xfd\mu n→∞lim∫Xfndμ=∫Xfdμ
证:
先证明几乎处处收敛的情形:实际上, g , − g g,-g g,−g都是可积函数,并且 − g ≤ f n ≤ g a . e . n = 1 , 2 , ⋯ -g\le f_n\le g\quad a.e. \quad n=1,2,\cdots −g≤fn≤ga.e.n=1,2,⋯由推广的Fatou引理,并且 lim sup n → ∞ ∫ X f n d μ ≤ ∫ X lim sup n → ∞ f n d μ lim inf n → ∞ ∫ X f n d μ ≥ ∫ X lim inf n → ∞ f n d μ \limsup_{n\to\infty}\int_Xf_nd\mu\le \int_X\limsup_{n\to\infty}f_nd\mu\\ \liminf_{n\to\infty}\int_Xf_nd\mu\ge \int_X\liminf_{n\to\infty}f_nd\mu n→∞limsup∫Xfndμ≤∫Xn→∞limsupfndμn→∞liminf∫Xfndμ≥∫Xn→∞liminffndμ并且 f = lim sup n → ∞ f n = lim inf n → ∞ f n a . e . f=\limsup_{n\to\infty}f_n=\liminf_{n\to\infty}f_n\quad a.e. f=n→∞limsupfn=n→∞liminffna.e.同时, ∣ f ∣ ≤ g a . e . |f|\le g\quad a.e. ∣f∣≤ga.e.,因此 f f f可积,同时 ∫ X lim sup n → ∞ f n d μ = ∫ X lim inf n → ∞ f n d μ = ∫ X f d μ \int_X\limsup_{n\to\infty}f_nd\mu=\int_X\liminf_{n\to\infty}f_nd\mu=\int_X fd\mu ∫Xn→∞limsupfndμ=∫Xn→∞liminffndμ=∫Xfdμ因此 lim n → ∞ ∫ X f n d μ = ∫ X f d μ \lim_{n\to\infty}\int_Xf_nd\mu = \int_Xfd\mu n→∞lim∫Xfndμ=∫Xfdμ如果 f n → μ f f_n\xrightarrow{\mu}f fnμf,那么由Riesz定理, { ∫ X f n d μ } \displaystyle\{\int_X f_nd\mu\} {∫Xfndμ}的任意子列,都存在子列收敛到 ∫ X f d μ \displaystyle \int_X fd\mu ∫Xfdμ,故 lim n → ∞ ∫ X f n d μ = ∫ X f d μ \displaystyle\lim_{n\to\infty}\int_Xf_nd\mu=\int_X fd\mu n→∞lim∫Xfndμ=∫Xfdμ
推论4.4(有界收敛定理) { f n } \{f_n\} {fn}是可测函数, A A A是测度有限的可测集,如果存在正数 M > 0 M>0 M>0, ∣ f n ( x ) ∣ ≤ M a . e . x ∈ A , n = 1 , 2 , ⋯ |f_n(x)|\le M\quad a.e.\quad x\in A,n=1,2,\cdots ∣fn(x)∣≤Ma.e.x∈A,n=1,2,⋯, f n → a . e . f f_n\xrightarrow{a.e.} f fna.e.f或 f n → μ f f_n\xrightarrow{\mu}f fnμf,则 f f f在 A A A上可积,并且 lim n → ∞ ∫ A f n d μ = ∫ A f d μ \lim_{n\to\infty}\int_Af_nd\mu=\int_Afd\mu n→∞lim∫Afndμ=∫Afdμ
推论4.5(求和号与积分号交换) { f n } \{f_n\} {fn}是可测函数, g = ∑ n = 1 ∞ ∣ f n ∣ \displaystyle g=\sum_{n=1}^\infty|f_n| g=n=1∑∞∣fn∣,如果 ∫ X g d μ < + ∞ \displaystyle \int_Xgd\mu<+\infty ∫Xgdμ<+∞,则 f = ∑ n = 1 ∞ f n f=\sum_{n=1}^\infty f_n f=∑n=1∞fn几乎处处有定义,并且 ∫ X f d μ = ∑ n = 1 ∞ ∫ X f n d μ \int_Xfd\mu = \sum_{n=1}^\infty \int_X f_nd\mu ∫Xfdμ=n=1∑∞∫Xfndμ
因为对任意的 i = 1 , 2 , ⋯ , n , j = 1 , 2 , ⋯ , m i=1,2,\cdots,n,j=1,2,\cdots,m i=1,2,⋯,n,j=1,2,⋯,m,如果 E i ∩ F j ≠ ∅ E_i\cap F_j\neq \emptyset Ei∩Fj=∅,那么在 E i ∩ F j E_i\cap F_j Ei∩Fj上,如果按照表示法 f = ∑ k = 1 n c k I E k \displaystyle f=\sum_{k=1}^nc_kI_{E_k} f=k=1∑nckIEk,函数值为 c i c_i ci,如果按照表示法 f = ∑ k = 1 m d k I F k \displaystyle f=\sum_{k=1}^md_kI_{F_k} f=k=1∑mdkIFk,则函数值为 d j d_j dj,由函数之定义, c i = d j c_i=d_j ci=dj,故 c i I E i ∩ F j = d j I E i ∩ F j c_iI_{E_i\cap F_j}=d_jI_{E_i\cap F_j} ciIEi∩Fj=djIEi∩Fj,如果 E i ∩ F j = ∅ E_i\cap F_j= \emptyset Ei∩Fj=∅,那么 I E i ∩ F j I_{E_i\cap F_j} IEi∩Fj恒为零,此时还有 c i I E i ∩ F j = d j I E i ∩ F j c_iI_{E_i\cap F_j}=d_jI_{E_i\cap F_j} ciIEi∩Fj=djIEi∩Fj,如果不在 E i ∩ F j E_i\cap F_j Ei∩Fj上, I E i ∩ F j = 0 I_{E_i\cap F_j}=0 IEi∩Fj=0,显然有 c i I E i ∩ F j = d j I E i ∩ F j c_iI_{E_i\cap F_j}=d_jI_{E_i\cap F_j} ciIEi∩Fj=djIEi∩Fj,总而言之,恒有 c i I E i ∩ F j = d j I E i ∩ F j c_iI_{E_i\cap F_j}=d_jI_{E_i\cap F_j} ciIEi∩Fj=djIEi∩Fj,故 ∑ i = 1 n ∑ j = 1 m c i I E i ∩ F j = ∑ i = 1 n ∑ j = 1 m d j I E i ∩ F j \displaystyle \sum_{i=1}^n\sum_{j=1}^mc_iI_{E_i\cap F_j}=\sum_{i=1}^n\sum_{j=1}^md_jI_{E_i\cap F_j} i=1∑nj=1∑mciIEi∩Fj=i=1∑nj=1∑mdjIEi∩Fj ↩︎
两个和式相等的依据:
如果 E i ∩ F j ≠ ∅ E_i\cap F_j\neq \emptyset Ei∩Fj=∅,则 c i = d j c_i=d_j ci=dj,故 c i μ ( E i ∩ F j ) = d j μ ( E i ∩ F j ) c_i\mu(E_i\cap F_j)=d_j\mu(E_i\cap F_j) ciμ(Ei∩Fj)=djμ(Ei∩Fj),如果 E i ∩ F j = ∅ E_i\cap F_j= \emptyset Ei∩Fj=∅,则 μ ( E i ∩ F j ) = 0 \mu(E_i\cap F_j)=0 μ(Ei∩Fj)=0,因此 c i μ ( E i ∩ F j ) = d j μ ( E i ∩ F j ) = 0 c_i\mu(E_i\cap F_j)=d_j\mu(E_i\cap F_j)=0 ciμ(Ei∩Fj)=djμ(Ei∩Fj)=0,综上,恒有 c i μ ( E i ∩ F j ) = d j μ ( E i ∩ F j ) c_i\mu(E_i\cap F_j)=d_j\mu(E_i\cap F_j) ciμ(Ei∩Fj)=djμ(Ei∩Fj)求和,就得到 ∑ i = 1 n ∑ j = 1 m c i μ ( E i ∩ F j ) = ∑ i = 1 n ∑ j = 1 m d j μ ( E i ∩ F j ) \sum_{i=1}^n\sum_{j=1}^mc_i\mu(E_i\cap F_j)=\sum_{i=1}^n\sum_{j=1}^md_j\mu(E_i\cap F_j) i=1∑nj=1∑mciμ(Ei∩Fj)=i=1∑nj=1∑mdjμ(Ei∩Fj) ↩︎