百面深度学习:基于度量学习的元学习模型

更多基础知识可以查看前文内容 《百面深度学习》之元学习

基于度量学习(Metric Learning)的元学习方法,是基于最邻近方法的元学习的延伸。

知识点: 灾难性忘却(catastrophic forgetting)、 度量学习、外部记忆、注意力机制

Q1 元学习中非参数方法相比于参数方法的优点?

  • 非参数方法: 在新任务上没有参数学习的过程
  • 参数方法:在新任务上需要继续微调模型

参数方法的缺点:

  • 训练使得新任务的学习过程比较慢,达不到快速学习的目的,且不适合样本很少的情况。
  • 微调过程会受到新任务自身携带的噪声等影响,让原先在 D m e t a − t r a i n D_{meta-train} Dmetatrain上训练好的模型参数值被错误信息覆盖,这种现象称为灾难性忘却

非参数方法的优点:

  • 不依赖梯度下降的优化过程
  • 不修改预训练的参数信息。新样本信息不会相互干扰,避免了灾难性忘却。
  • 可以快速学习,尤其是适用于样本少的情况。

Q2 如何用度量学习和注意力机制来改造基于最邻近的元学习方法?

新模型结构

  1. 给定单个任务的数据集 D t a s k = { D t r a i n , D t e s t } D_{task} = \left\{D_{train},D_{test}\right\} Dtask={Dtrain,Dtest}, 将 D t r a i n D_{train} Dtrain定义为一个由<样本,标签>对构成的支持集,视作一个外部记忆(external memory)
  2. 预测 D t e s t D_{test} Dtest中的样本时,对这个外部记忆进行快速的查找,灵活的访问 D t r a i n D_{train} Dtrain的每一个样本。
  3. 访问的方法采用软注意力(soft-attention)机制,这是一种形如加权平均的访问机制,完全可导,方便利用梯度下降进行端到端的学习。

对元学习进行建模
元学习的泛函含义: 从单个任务t到该任务分类器函数的映射: 即 t ↦ f ( ⋅ , D t r a i n t ; Θ ) t \mapsto f(\cdot,D^t_{train}; \Theta) tf(,Dtraint;Θ). 也就是说元学习会为每个任务生成一个分类器,不同任务基于不同的训练集,但共享元参数 Θ \Theta Θ.

实现 f ( ⋅ , D t r a i n t ; Θ ) f(\cdot,D^t_{train}; \Theta) f(,Dtraint;Θ)的具体结构
在这里插入图片描述
如何 7.4所示 g Θ g_{\Theta} gΘ h Θ h_{\Theta} hΘ 是两个计算嵌入向量的神经网络结构,前者负责计算训练样本的嵌入向量,后者负责计算测试样本的。 (二者也可以是同一个网络)。

  • 基于训练样本的嵌入向量,构造外部记忆。 假设 z i = g Θ ( x i ) z_i = g_{\Theta}(x_i) zi=gΘ(xi)为样本 x i x_i xi的嵌入向量,对应的类别标签为 y i y_i yi, 将 ( z i , y i ) (z_i,y_i) zi,yi存储在记忆模块的一个槽中,访问时,基于 z i z_i zi计算匹配权重,匹配返回 y i y_i yi。 这样的记忆模块称为关联记忆(associative memory)
  • 对测试样本x,先计算他的嵌入向量 z = h Θ ( x ) z = h_{\Theta}(x) z=hΘ(x),再利用注意力机制访问记忆模块以获取最终的标签,公式为 y = ∑ i a ( z , z i ) y i y = \sum_ia(z,z_i)y_i y=ia(z,zi)yi , 其中 a ( ⋅ ) a(\cdot) a可以是一个神经网络。

注意力机制的两两计算方法,本质是核方法(kernel method),所以也称为注意力核(attention kernel)

将整个训练集 D t r a i n D_{train} Dtrain作为支持集S 输入到网络, 即 g Θ ( x i , S ) g_\Theta(x_i,S) gΘ(xi,S) h Θ ( x , S ) h_\Theta(x, S) hΘ(x,S), 这样嵌入网络就拥有了全局视野。

总结
明显缺点: 外部记忆的大小会随着支持集的样本数增大而增大,没有上限。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

_Summer tree

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值